EXERCISE 1: Math Review: Binary Relations (mostly)

Due August 22

1. Consider the following potential properties of a binary relation R on a set X
(i) Reflexivity: for any $x \in X, x R x$
(ii) Completeness: for any $x, y \in X, x R y$ or $y R x$ (or both)
(iii) Transitivity: for any $x, y, z \in X$, if $x R y, y R z$ it follows that $x R z$

Which of the above properties is satisfied by each of the following binary relations?
a) $X=\mathbb{R}_{+}^{n}, x R y$ iff (iff $=$ if and only if) $x \geq y$
b) $X=\mathbb{R}_{+}^{n}, x R y$ iff $\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \geq \min \left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$
c) $X=\mathbb{R}_{+}^{2}, x R y$ iff either $x_{1}>y_{1}$, or if $x_{1}=y_{1}$ then $x_{2} \geq y_{2}$
d) $X=\mathbb{R}_{+}, x R y$ iff $x>y$
e) $X=\mathbb{R}_{+}, x R y$ for all $x, y \in X$
f) $X=\mathbb{R}_{+}, x R y$ iff $\frac{x}{5}-\left[\frac{x}{5}\right] \geq \frac{y}{5}-\left[\frac{y}{5}\right]$, where $[z]$ (integer part of z) is the largest integer smaller than z.
2. A binary relation R over some set X is said to be negatively transitive if for every $x, y, z \in X\urcorner,(x R y)$ and $\urcorner(y R z)$ imply $\urcorner(x R z)$. A binary relation R over X is said to be asymmetric if for every $x, y \in X, x R y$ implies $\urcorner(y R x)$. Show that any R that is both asymmetric and negatively transitive is transitive.

3 A binary relation R on X is called asymmetric if for every $x, y \in X x R y$ implies $\urcorner(y R x)$ and it is called irreflexive if for every $x \in X$ we have $\urcorner(x R x)$. Show that every preference relation that is both irreflexive and transitive is asymmetric.
4. Show that if a binary relation is transitive then so are its symmetric and asymmetric parts.
5. (Kreps, exercise 2.2) A binary relation R is symmetric if $x R y$ implies $y R x$ for any x, y. Consider the following proof that transitivity and symmetry imply reflexivity (i.e. that $x R x$ for any x). For any x take y such that $x R y$. Clearly, symmetry implies $y R x$ and, therefore transitivity then implies that
$x R x$. Is this proof correct? Why, or why not? Is the statement itself (that symmetry and transitivity together imply reflexivity) correct?
6. Show that the set \mathbb{R}_{+}is connected (i.e., it cannot be partitioned into two clopen sets).

