EXERCISE 2:
 Math Review, Choices and Preferences

Part I

Exercises 1.B.1, 1.B.2, 1.C.1, 1.C.2, 1.C.3, 1.D.1, 1.D.2, 1.D.3, 3.B.1, 1.D. 4 from Mas-Colell. Exercises 1.1,1.2, and 1.4 from Rubinstein.(also, check out 1.3 and 1.5 - they are fun).

Part II

1. Consider a binary relation R on some connected space X. As usual, let P be its asymmetric part and I be its symmetric part. The relation R is called continuous on X if for any $x \in X$ the sets $A=\{y \in X: x R y\}$ and $B=\{y \in X: y R x\}$ are both closed in X.
a) Which of the binary relations in the first problem in Exercise 1 are continuous, and which are not?

For the rest of the problem assume R is a complete preorder (i.e., it is both complete and transtitive).
b) Suppose there exists a pair $x, y \in X$ s.t. $x P y$. Show that if R is continuous there must exist a $z \in X$ such that $x P z$ and $z P y$.
c) Would the above statements still hold if R were not complete?
2.
a) Does the correspondence $\Phi: \mathbb{R}_{++} \rightarrow \mathbb{R}$ given by $\Phi(x)=\left\{y \in \mathbb{R}: \ln x \leq y \leq e^{x}\right\}$ have a closed graph? is it non-empty-valued? closed-valued? convex-valued? compact-valued? (if compact-valued) upper hemi-continuous? lower hemicontinuous? continuous? Graph this correspondenc.
b) show that the correspondence $B: \mathbb{R}_{++}^{3} \rightarrow \mathbb{R}_{+}^{2}$ given by $B(x)=\left\{y \in \mathbb{R}^{2}: x_{1} y_{1}+x_{2} y_{2} \leq x_{3}\right\}$ is continuous.

