Group Decision-Making and Voting in Ultimatum Bargaining:
An Experimental Study*

by

Alexander Elbittar, Andrei Gomberg and Laura Sour

Abstract

Many rent-sharing decisions in a society result from a bargaining process between groups of individuals (such as between the executive and the legislative branches of government, between legislative factions, between corporate management and shareholders, etc.). We conduct a laboratory study of the effect of different voting procedures on group decision-making in the context of ultimatum bargaining. Earlier studies have suggested that when the bargaining game is played by unstructured groups of agents, rather than by individuals, the division of the payoff is substantially affected in favor of the ultimatum proposers. Our theoretical arguments suggest that one explanation for this could be implicit voting rules within groups. We explicitly structure the group decision-making as voting and study the impact of different voting rules on the bargaining outcome. The observed responder behavior is consistent with preferences depending solely on payoff distribution. Furthermore, we observe that proposers react in an expected manner to changes in voting rule in the responder group.

Keywords: Bargaining games, group decision making and experimental design.

JEL Classification Numbers: C92, D44, D82.

*We would like to thank Gary Bornstein, Vincent Crawford, David Kaplan, John Kagel, Martin Kocher, David Levine, Eric Magar, Cesar Martinelli, Jack Ochs, Martin Osborne, Charlie Plott, Amnon Rapoport, Al Roth, Andrew Schotter, Tridib Sharma, participants of the 2nd World Congress of the Game Theory Society, 2004 North American and 2005 International ESA Meetings, 2005 Public Choice Society Meetings, 2005 Cancún Political Economy Workshop, 2005 SAET Meetings, 2005 World Congress of the Econometric Society, seminars at Universidad Carlos III, NES/CEFIR, ITAM, UNAM, Colegio de México and CIDE for their helpful advice, Gabriela Calderón, Esteban Colla, Carlos Lever, Demián Reyes and Arám Zamora for assistance in running the experiments, and Abelardo León for assistance in programming. Financial support from the Ford Foundation-CIDE and Asociación Mexicana de Cultura is also acknowledged. To contact Elbittar or Sour: CIDE, Carretera México-Toluca 3655, 01210 México, DF, Mexico, Phone: +52 55 57279800; e-mail: alexander.elbittar@cide.edu. e-mail: laura.sour@cide.edu. To contact Gomberg: ITAM - CIE, Camino Santa Teresa 930, 10700 México DF, México. Phone: +52 55 56284197. Fax: +52 55 56284058; e-mail: gomberg@itam.mx
1 Introduction

Many common bargaining situations, such as those that occur between states, between branches of government or between legislative factions, between corporate management and shareholders, etc. involve interactions between groups rather than between individuals. Consequently, in modeling applications of bargaining one or both sides are frequently best viewed as amalgamations of agents.

In such circumstances, it is natural to believe that intra-group decision-making rules must affect bargaining outcomes. This theoretical observation is, of course, not new, dating, in the context of international relations, back to, at least, Schelling [27], who conjectured that domestic ratification constraints might serve to strengthen the executive’s position vis-a-vis foreign governments compared with what would have obtained if such constraints didn’t exist. The application of this argument, of course, crucially depends on assuming that negotiators are capable of internalizing the impact of their opponents’ internal decision-making processes. While this seems plausible, we are unaware of prior direct experimental confirmation of this behavioral assumption.

We conduct a laboratory study of group behavior in the context of ultimatum bargaining. In this game, one side proposes how to partition a total available payoff between itself and the other side, who, in turn can accept or reject the proposal. In case of acceptance the proposal is implemented, while in case of rejection neither side receives anything. As is well-known, the subgame-perfect equilibrium outcome is for the ultimatum-proposer to receive (almost) the entire surplus. In contrast, in laboratory implementation of the game, ultimatum-responders consistently obtain a significant, though smaller, share.

Our objective is to explore how ultimatum bargaining between groups differs from that between individuals, and to compare the impact of different rules for aggregating individual preferences into group decisions. If such impact is non-negligible, it has general implications for bargaining between groups using different explicit voting rules to agree on intra-group decisions (and it might help to identify implicit preference aggregation mechanisms used in groups that do not have explicit rules). Additionally, a laboratory study of group bargaining provides a new test of the models that have been proposed to explain individual behavior in bargaining situations.

Our experimental observations can be summarized in two propositions. First, individual responder behavior across treatments can be explained by agents caring about the monetary payoffs of the proposers (in addition to their own). Second, we observe that proposer behavior significantly depends (in the manner predicted by our model) on the intra-group decision rule in force among the responders, and is generally different from

1 Our choice of the simplest possible bargaining procedure is mainly dictated by the ease of its experimental implementation and by the straightforward interpretation of the experimental results in this setting.
the proposer behavior in the one-on-one bargaining. This suggests that subjects are able to internalize the different nature of the responders across the treatments.

As noted above, when group bargaining situations are modeled by economists and political scientists, the ability of agents to react to internal institutions is commonly assumed. The examples are too numerous to be surveyed here. The assumption is implicit in Schelling’s [27] conjecture about the role of domestic political constraints in international negotiation, which led to Putnam’s [21] description of the linked problems of domestic politics and international negotiation as “two-level games”. Putnam [21] himself explicitly noted importance of varying ratification procedures in bargaining situations; the same observation has been formally, for instance, by Haller and Holden [12], who concluded that the supermajority treaty ratification requirement imposed by the U.S. constitution may indeed advantageously affect that country’s negotiating positions. In a related context, Manzini and Mariotti [17] suggested that unanimity-based decision-rules within alliances should make them more successful in negotiations compared with coalitions governed by majority rule. The assumption that agents are cognizant of the impact of intra-group institutions on inter-group bargaining is also implicit in Romer and Rosenthal [24],[25] work on political resource allocation, in which the monopoly agenda-setter effectively bargains with the median voter, thus internalizing the majority voting used in a democracy. We believe that our experimental findings provide some support for the theoretical conclusions of all of these papers.

In parallel to this theoretical literature, the issue of empirical intergroup interaction in games has received a lot of attention from social psychologists. In a recent paper Wildschut et al. [29] provide a “meta-study” of a large body (some 130 studies) of experimental evidence on what is known in psychology as the group discontinuity effect: the general tendency of groups of agents to behave more aggressively than individuals in similar circumstances, whether due to social reinforcement of aggressive behavior, greater anonymity within the group, or fear of aggressive behavior by the opposing group. More recently, the issue has been taken up by economists, who compared the degree to which group and individual play conforms to the game-theoretic predictions. Bornstein and Yaniv [2] find indications of more aggressive proposer behavior in group ultimatum games, while Bornstein et al. [3] see earlier group exit in the centipede game, both pointing towards the backward induction outcomes of these games. Similarly, Cox [8] observes that in an investment game group decisions correspond to those of their most aggressive members, which makes them most closely “game-theoretic” in terms of monetary payoffs. Kocher and Sutter [14] observe more aggressive group behavior to prevail in a gift-exchange experiment even when group members are not allowed any face-to-face interaction but reach a decision via a computer communication protocol. In contrast, in a context of the dictator game Cason and Mui [6] observe that more generous (other-regarding) agents dominate group decisions. Overall, the issue remains unsettled, and Camerer [5] includes further
study of the manner in which groups act in games as one of the ten top open research questions in behavioral economics.

One difficulty in studies of intergroup interaction is that the intra-group decision-making may be difficult to observe or categorize, unless it is explicitly imposed. But imposing some preference aggregation rule may have a direct impact on the way the game is played. A distinct question is to what extent intra-group decision rules themselves matter. Here the evidence so far is extremely limited. While the decision rule would affect a group’s decision, it is a separate issue, as we note above, if this is understood and internalized by the opposing group. In a few studies that posed this question previously, as in Messick et al. [18], and in a very recent study by Bosman et al. [4], the answer seems to be negative: members of a group tend to view the opposing group as unitary and ignore its decision process. On the whole, the issue remains underexplored, and our study seems to challenge some of the earlier conclusions.

The one-on-one ultimatum bargaining game has been repeatedly played in laboratory settings, beginning with Güth et al. [11], and a number of robust regularities has emerged, as summarized in Roth [26] and Camerer [5]. In particular, it has been repeatedly observed that, at least in industrialized societies, the proposers of the ultimatum tend to offer the responders a sizeable chunk of the payoff (often in excess of 40%), while the low offers get consistently rejected by the responders. While at variance with the subgame-perfect equilibrium prediction for a game with purely monetary payoffs, it could be explained by an uncontrolled non-monetary payoff component, such as utility of fairness or of punishing “insulting” offers. This is the conclusion Ochs and Roth [19] draw from a series of sequential bargaining experiments. In fact, for a number of such experiments, Prasnikar and Roth [20] suggest that ultimatum-proposers may be trying to maximize monetary payoff subject to the empirical rejection behavior of ultimatum-responders, which, in turn, might be generated by unobserved (and uncontrolled) payoffs.

Kennan and Wilson [15] suggested that “even the basic single-offer ultimatum game becomes a game of private information in which the optimal offer depends on beliefs about how much the responder is willing to forgo to punish unfair behavior”. In other words, laboratory bargaining games should be modeled as incomplete information games, which in the ultimatum game context may be done by explicitly modeling rejection thresholds as responder types. This has been formalized in studies such as Levine [16], who incorporated altruism and/or spitefulness into individual preferences; Bolton and Ockenfels [1], who allow the agents to care about their relative position in the society; and in the fairness model of Fehr and Schmidt [9]. In these models, the agents may only be aware of the preference distribution in the population, but not of the actual types they face. In the context of the ultimatum bargaining, this generates an incomplete information game with ultimatum-proposers having beliefs about the rejection probability of any given ultimatum. In this paper we provide a simple model in the spirit of Bolton and Ockenfels [1] and
Fehr and Schmidt [9], narrowly targeted to provide comparative empirical predictions for our experiment.

Until recently all laboratory ultimatum bargaining games have been implemented in a one-on-one setting. A 1998 study (Bornstein and Yaniv [2]) has suggested that when the ultimatum game is played by unstructured groups of agents, rather than by individuals, the division of the payoff is substantially affected in favor of the ultimatum-proposers. In their language, this result can be explained by thinking of groups as “more rational” agents than individuals, if rationality is viewed as being closer to the subgame-perfect outcome of the ultimatum game with pure monetary payoffs. In a concluding remark they suggest that an alternative explanation could be that ultimatum proposers take into account an implicit decision-making process of the responder group (such as, perhaps, majority voting). This conjecture cannot be tested without either a control for or an explicit model of such a process.

A couple of papers have attempted to deal with the issue of intra-group decision-making. Robert and Carnevale [23] observe that in a group-on-group ultimatum game that proposer groups tend to follow the preferences of its “most competitive” member. The result is a substantially more aggressive proposer group behavior, as in Bornstein and Yaniv [2]. Unfortunately, their responder groups are fictitious, and the proposers don’t explicitly observe rejections; it is thus impossible to figure out if they are best-responding to anything on the responder side. A more explicit laboratory implementation of intra-group decision-making has been conducted by Messick et al. [18], who compare group-on-group bargaining under two decision-making procedures in the responder group: in one treatment responders must unanimously agree to accept the offer, while in the other the unanimity is required for rejection. Somewhat surprisingly, they could not observe any difference in proposer behavior, even though the best response in the former treatment seems to imply much less aggressive ultimatums than in the latter.

While the previously mentioned studies look at single-shot bargaining between inexperienced subjects, Grosskopf [10] studies behavior changes as agents learn from their experience. Comparing one-on-one and one-on-group ultimatum bargaining under a group decision rule similar to one of the treatments in Messick et al.’s [18] (unanimity required for rejection) she finds that though the agents might not be able to figure out the difference immediately, with experience a clear difference emerges between the play against groups versus play against individuals. In particular, she observes that when playing against groups proposers eventually learn to be more aggressive.

The rest of this paper is organized as follows: section 2 develops a simple model of ultimatum bargaining under incomplete information and derives testable predictions; section 3 discusses experimental design; section 4 presents laboratory results; section 5

They elicit the individual preferences from observations of one-on-one play by the same agents.
concludes.

2 The Model

We start by providing a simple incomplete information model of ultimatum bargaining, specified to the extent we shall be able to implement it in the lab. Our model most closely resembles those of Bolton and Ockenfels [1] and Fehr and Schmidt [9].

We shall assume that agents care about both monetary payoffs and “fairness”, but they only care about the latter when they get less than their equal share of the surplus. This assumption can be somewhat justified by earlier experimental results, such as Prasnikar and Roth [20], as discussed in Roth [26]. Likewise, Kagel et al. [13] observe that proposers behave more aggressively, if they know that responders don’t know the payoff size and so can’t figure out if they are treated “unfairly” or “insultingly” by the proposers. This suggests that when unfairness works in one’s favor, agents might not dislike it so much, as long as they can’t be observed as unfair or punished for it. In the same vein, Fehr and Schmidt [9] cite psychological literature to support the assumption that people dislike unfairness that works in their favor less than they dislike the same when it works against them. Our assumption that when agents ignore that others are not getting their share as long as they themselves do is somewhat extreme, but relaxable: it only affects qualitative, but not quantitative predictions of the model as to the comparative behavior of agents in different treatments of our experiment.

We shall first analyze the behavior of responders. A responder likes money, but, in addition, she gets disutility when she is not being treated fairly. If she is facing a bad offer, she will prefer to reject, since that would result in a fairer distribution, or since it will punish the “insolent” proposer. We shall remain agnostic on the true nature of the possible rejection since our experiment is not designed to elicit this information. One possibility here is that the difference between the payoffs of the proposer and the responder enters her utility, which is thus $u_r(x_r, x_r - x_p)$, where x_r is her monetary wealth and x_p is that of the proposer. To the extent that there are only two agents involved in actual play, the pair $(x_r, x_r - x_p)$ describes the entire monetary payoff distribution between them. Therefore, (only within our experimental setting) our approach is equivalent both to the Bolton and Ockenfels [1] assumption that the agents care about their share of the total and the Fehr and Schmidt [9] assumption that they care about absolute differences. We assume the function u_r to be increasing in both arguments.

Since in ultimatum games proposers nearly always get at least half the total payoff, our assumption that agents don’t care about others being treated unfairly is equivalent to assuming that, as long as $x_p > x_r$ each proposer has a strictly increasing Bernoulli utility function of money $u_p(x_p)$, where x_p is how much money she gets. Throughout, we shall
assume that this $u_p(x_p)$ is concave (proposers are weakly risk-averse). \(^3\)

The total payoff size available for sharing between a proposer and a responder is $\pi > 0$. The proposer has to choose a number $x \in [0, \pi]$ that she will offer to the responder, with the balance of $\pi - x$ being left to herself. The responder will accept the offer whenever

$$u_r(x, 2x - \pi) \geq u(0, 0)$$

and reject otherwise. \(^4\)

If the proposer knows preferences of the responder, the subgame-perfect equilibrium is obvious. The proposer should choose $x^* \in [0, \pi]$ that solves

$$u_r(x^*, 2x^* - \pi) = u(0, 0)$$

and the responder should only accept offers as high as, or higher than this x^*, where $x^* \in [0, \frac{\pi}{3}]$.

Of course, the proposer can’t \textit{ex ante} observe the responder’s preferences. The only things subject to observation and experimental control are the monetary offer x and the total prize π. Therefore, the only thing known to the proposer is that each responder r will reject offers below a certain cut-off value x_r and that this x_r is drawn from some probability distribution with the support $[0, \pi]$ with the distribution function $F(x)$. \(^5\) Clearly, $F(x)$ can be interpreted as the acceptance probability of offer x.

We shall denote the probability of rejection $P(x) = 1 - F(x)$. Suppose that $P(\pi) = 0$ (if you give everything to the responder she always accepts) and $P(0) = 1$ (offers of nothing are always rejected), both of which are very robust empirical regularities observed in ultimatum game experiments. These assumptions clearly imply impossibility of corner solutions to the proposer’s maximization problem. The proposer’s expected payoff from the ultimatum x is

$$\Pi(x) = u_p(\pi - x)(1 - P(x))$$

Assuming differentiability of u_p and P, clearly $u'_p \geq 0$ and $P' \leq 0$. The first order

\(^3\)It should be stressed that our results hold for either risk-neutral or risk-averse agents. We are aware of the controversy about risk-aversion with usual laboratory-sized payoffs (see Rabin[22]), but since our results do not depend on it, we choose to allow the possibility of concave utilities. Replacing risk-aversion with loss-aversion would not affect the results. Since responders never face uncertainty, their risk-preference is entirely irrelevant.

\(^4\)We assume acceptance in case of indifference; since it is a zero-probability event in the incomplete information version of the game, this assumption is innocuous.

\(^5\)As noted above, $x_r \in [0, \frac{\pi}{3}]$. This seems to be confirmed empirically, since large offers almost never get rejected. On the other hand, offers above the half of the total prize, though rare, do occur, which can’t be explained as a best response under the belief that cutoffs are distributed with the support $x_r \in [0, \frac{\pi}{2}]$. Perhaps, some proposers have a different model of recipients in mind, which allows for higher cutoffs.
necessary condition for expected utility maximization in the interior is

\[
u_p' (\pi - x) (1 - P(x)) = -u_p (\pi - x) P'(x)\]

Furthermore, a necessary condition for maximization is \(P(x) < 1 \) (since \(P(x) = 1 \) would guarantee a zero payoff). The first order conditions are easily seen to be sufficient if \(P(x) \) is convex at \(x \).

2.1 Group bargaining

The group bargaining framework has to be designed as closely as possible to the one-on-one treatment in order to minimize any unmodelled difference in behavior. For this reason, we preserve the symmetry between the sides by assuming the same group size of proposers and responders and equipartition of the monetary payoff within each side. This avoids either payoff scale differences or public good/efficiency aspects which would be inevitable if the symmetry were to be broken.

Consider the ultimatum bargaining between groups of three proposers and three responders for a prize \(3\pi \). The proposers’ share of the prize will be divided equally between the proposers and the responders’ share between the responders. An ultimatum \(x \) shall mean that each proposer gets \(\pi - x \), and each receiver gets \(x \). Under these conditions the pair \((x, \pi - x)\) continues to completely describe the distribution of the monetary payoffs in case of acceptance.

In what follows we explore consequences of three intra-group decision rules among the responders: majority decision to accept/reject; unanimity needed to overturn acceptance; unanimity needed to overturn rejection.\(^6\)

In general, the voting games played by the responders will have multiple equilibria, since, for instance, if I believe that all my partners in a group always vote to accept and the decision rule is majority, I am indifferent between voting to accept and to reject. Note, however, that such equilibria in a one-shot voting game involve playing weakly dominated strategies. In fact, for a voter facing an ultimatum \(x \) doing anything other than voting sincerely is weakly dominated by sincere voting (this is an election between just two alternatives). Therefore, we shall only consider sincere voting equilibria. Clearly, in such equilibria the outside observer’s \textit{ex ante} probability \(P(x) \) of an agent voting to reject an offer \(x \) is \textit{constant across the treatments}. We shall take this to be the first comparative static prediction of our model.

\(^6\) We could have considered another alternative: the dictatorship (one agent chosen to make the decision to accept or reject for the entire group). Note though a recent paper by Charness and Jackson [7], who find in the context of the Stag Hunt games that the dictator group-on-group game may be played differently from the one-on-one game (at least as far as equilibrium selection is concerned) due to a feeling of responsibility on the part of the dictator. We do not model it here though, so the dictator rule would be equivalent to the one-on-one game.
The above discussion provides an additional reason to give up on eliciting the entire strategies of responders (as attempted, for instance, by Messick et al. [18]): even the simple cut-off acceptance/ rejection strategies are relatively complex objects and if voting over them would be allowed, empirically disentangling the multiple equilibria could be hard. On the other hand, at their action node the responders face a simple binary decision: accept or reject the offer in front of them. Unfortunately, the action of proposers is more complicated: they have to choose a number in the $[0, \pi]$ interval. As in the responder case, we want to avoid voting complications and/or having to impose an elaborate voting protocol in the lab. For this reason, given a more complicated decision facing the proposers, we shall let each proposer make his ultimatum ignorant of the rest, and then randomly choose one of the ultimatums to be presented to the responders. In this case individual’s proposal only matters, on average, a third of the time. However, unless the proposer has some non-monetary motivation, it is optimal for him to make decisions as if he were alone: either he does not matter, or his decision problem is unchanged.

Since, as discussed above, we expect individual responder behavior $P(x)$ to be constant across treatments, group rejection probabilities should vary predictably with the group decision rule. The following table summarizes the rejection probability under each of the four intra-group decision rules on the ultimatum responder side:

<table>
<thead>
<tr>
<th>Group Decision Rule</th>
<th>Default</th>
<th>Probability of Rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Response</td>
<td>-</td>
<td>$P(x)$</td>
</tr>
<tr>
<td>Majority Rule</td>
<td>-</td>
<td>$P^3(x) + 3P^2(x)(1 - P(x))$</td>
</tr>
<tr>
<td>Unanimity Rule</td>
<td>Accept</td>
<td>$P^3(x)$</td>
</tr>
<tr>
<td>Unanimity Rule</td>
<td>Reject</td>
<td>$1 - (1 - P(x))^3$</td>
</tr>
</tbody>
</table>

This implies, that the proposer’s expected utilities for the ultimatum x are as follows:

<table>
<thead>
<tr>
<th>Group Decision Rule</th>
<th>Default</th>
<th>Expected Utility: $\Pi(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Response</td>
<td>-</td>
<td>$u_p(\pi - x)(1 - P(x))$</td>
</tr>
<tr>
<td>Majority Rule</td>
<td>-</td>
<td>$u_p(\pi - x)(1 - P(x))^2(1 + 2P(x))$</td>
</tr>
<tr>
<td>Unanimity Rule</td>
<td>Accept</td>
<td>$u_p(\pi - x)(1 - P^3(x))$</td>
</tr>
<tr>
<td>Unanimity Rule</td>
<td>Reject</td>
<td>$u_p(\pi - x)(1 - P(x))^3$</td>
</tr>
</tbody>
</table>

The first order necessary conditions for expected utility maximization, simplified by noticing that $P(x) < 1$ in the optimum and dividing both sides of the condition for the
majority rule by \((1 - P(x)) > 0\) and the condition for unanimity with rejection default by \((1 - P(x))^2 > 0\), are as follows:

<table>
<thead>
<tr>
<th>Group Decision Rule</th>
<th>Default</th>
<th>FOC Expected Utility Maximization (simplified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Response</td>
<td>-</td>
<td>(u_p'(\pi - x)(1 - P(x)) = -u_p(\pi - x)P'(x))</td>
</tr>
<tr>
<td>Majority Rule</td>
<td>-</td>
<td>(u_p'(\pi - x)(1 - P(x))(1 + 2P(x)) = -6u_p(\pi - x)P'(x)P(x))</td>
</tr>
<tr>
<td>Unanimity Rule</td>
<td>Accept</td>
<td>(u_p'(\pi - x)(1 - P^3(x)) = -3u_p(\pi - x)P'(x)P^2(x))</td>
</tr>
<tr>
<td>Unanimity Rule</td>
<td>Reject</td>
<td>(u_p'(\pi - x)(1 - P(x)) = -3u_p(\pi - x)P'(x))</td>
</tr>
</tbody>
</table>

Without a further assumption on \(P\), multiple local maxima are possible. Though global maximum, generically (in either \(P\) or \(u\)), would be unique, multiplicity of local maxima might allow the global maximum to “jump” depending on the voting rule, which might create problems with identifying the impact of the rules. Unfortunately, \(P\) is not directly observable, either by the experimenters or by the subjects. The following assumption, which is satisfied by most “symmetric” models of rejection probability (such as linear, logit or probit), would avoid this problem.

Assumption A: \(P(x)\) is (weakly) convex whenever \(P(x) \leq \frac{1}{2}\).

Let \(x_{UAD}\) be an agent’s optimal proposal when the responder decision is taken under the unanimity with acceptance default, \(x_{URD}\) - the same for the unanimity with rejection default and \(x_{MR}\) - for the majority rule; finally let \(x_i\) be the optimal proposal in the standard one-on-one bargaining. We can now state the following proposition:

Proposition 1 Let assumption A hold. The optimal offers by any risk-averse individual in each treatment will be ranked as follows:

\[
x_{UAD} < x_i < x_{MR} < x_{URD}, \quad \text{if } P(x) > \frac{1}{4}
\]

\[
x_{UAD} < x_{MR} < x_i < x_{URD}, \quad \text{if } P(x) < \frac{1}{4}
\]

Proof. The proof is done by comparing the first order conditions. Since it has been assumed that \(P(0) = 1; P(\pi) = 0\), the solution is interior. Furthermore, assumption A ensures that, as long as \(P(x) \leq \frac{1}{2}\), the first order conditions are sufficient and that there is at most one local maximum for each voting rule in this range. But for all voting rules, other than unanimity with acceptance default, this must be the global maximum, since
the proposer can always ensure the payoff equal to $u_p \left(\frac{x}{2} \right)$ by offering to share the prize equally, which, as has been discussed above, will always be accepted.

Consider now the optimal offer x_I in the one-on-one game. Then

$$u_p' (\pi - x_I) (1 - P(x_I)) = -u_p (\pi - x_I) P'(x_I)$$

Comparing this with the first order condition for the unanimity with acceptance default game, observe that

$$u_p' (\pi - x_I) (1 - P^3(x_I)) > -3u_p (\pi - x_I) P' (x_I) P^2 (x_I)$$

as long as $P(x_I) < 1$. Since offering a proposal that would spur rejection with probability one cannot be optimal for the proposer, the inequality must hold. The right-hand side is decreasing in x, the left is increasing in x, hence to restore equality x has to be decreased for the optimum in the unanimity (with acceptance default) case to be achieved. Though unanimity with acceptance default is the only rule considered here for which the true global maximum might involve $P(x) > \frac{1}{2}$, that would imply even more aggressive behavior by the proposers, so that the conclusion that $x_{UAD} < x_I$ is maintained.

Similarly, for the unanimity with rejection default game

$$u_p' (\pi - x_I) (1 - P(x_I)) < -3u_p (\pi - x_I) P' (x_I)$$

and x has to be increased to get to the optimum (unique, since in this case, as noted above, $P(x) \leq \frac{1}{2}$ must hold at the maximum).

We have established that $x_{UAD} < x_I < x_{URD}$. It can be similarly shown that $x_{UAD} < x_{MR} < x_{URD}$. To establish the position of x_{MR} vis a vis x_I observe that

$$u_p' (\pi - x_I) (1 - P(x_I)) + 2 (x_I) > -6u_p (\pi - x_I) P'(x_I) P(x_I), \text{ if } P(x) < \frac{1}{4}$$

and

$$u_p' (\pi - x_I) (1 - P(x_I)) + 2 (x_I) < -6u_p (\pi - x_I) P'(x_I) P(x_I), \text{ if } P(x) > \frac{1}{4}$$

To see the necessary direction of change of x divide both sides of the previous inequality condition by $P(x) > 0$ to get

$$\frac{u_p' (\pi - x_I)}{P(x_I)} (1 - P(x_I)) + 2 (x_I) < (>) -6u_p (\pi - x_I) P'(x_I)$$

with the left-hand side increasing and the right hand side decreasing in x. ■
Empirical predictions summarized by the Proposition 1 admit a broad array of the shapes of \(u \) and \(P \). Furthermore, the (weak) risk-aversion and (weak) convexity of \(P \) in the relevant part of the domain are not necessary and could be further relaxed.

Predictions for the play against the unanimity groups are very straightforward; less so with the case of the majority rule. Equilibrium offers depend on the proposers’ degree of risk-aversion and the shape of the rejection probability \(P(x) \), both of which are hard to control in an experiment. Both offers that face higher and lower rejection probability than \(\frac{1}{4} \) are likely to be observed. However, we do have a qualitative prediction in that the less aggressive proposers in the one-on-one treatment should become somewhat more aggressive when playing against majority-rule groups, while the initially more “aggressive” proposers are predicted to moderate their behavior somewhat in this case (though they would still be relatively more aggressive than the initially less aggressive types).

Our comparative statics prediction on group action is contingent on the individual rejection probability \(P(x) \) being constant across treatments. This, in turn, crucially depends on the agents caring only about monetary payoff distributions in the game. Thus, for instance, if the agents get utility from voting to reject even when it has no impact on payoff distribution (one could term this "punishment" or "expression of annoyance" utility), then being in a group would make negative votes likelier, since whenever an agent is non-pivotal the “no” vote is costless. Clearly, this would imply a higher \(P(x) \) in group treatments, as compared to the one-on-one case. It is quite straightforward to develop the relevant comparative statics for this or other alternative theories. The reason we do not make the model in this paper general enough to incorporate such possibilities is simply that in our experimental results we find no evidence for the individual rejection probability \(P(x) \) varying across treatments, so that the simple model in this section is the one most consistent with our observations.

3 Experimental Design

3.1 Structure of the Ultimatum Bargaining

Our experimental design looks at the outcomes of the ultimatum bargaining game when two groups of players have to bargain over an amount of money: a group of 3 players ("proposers") suggests a division of a fixed amount of money, and a second group of 3 players ("responders"), accepts or rejects it. After observing the proposal, responders must decide whether to accept or reject it following a pre-determined voting rule. If responders reject the proposal, no group receives any pay, and if responders accept, each group receives the amount specified in the proposal.

Each voting rule specifies a treatment for our group-on-group ultimatum bargaining. We consider the following three voting rules:
Table 1: Independent Design

<table>
<thead>
<tr>
<th>Experimental Treatments of the Ultimatum Bargaining</th>
<th>Group Size</th>
<th># of Subjects per Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard One-on-One</td>
<td>1</td>
<td>24 and 30</td>
</tr>
<tr>
<td>Unanimity with Rejection Default</td>
<td>3</td>
<td>30 and 30</td>
</tr>
<tr>
<td>Unanimity with Acceptance Default</td>
<td>3</td>
<td>30 and 30</td>
</tr>
<tr>
<td>Majority Rule</td>
<td>3</td>
<td>24 and 30</td>
</tr>
</tbody>
</table>

Table 2: Sequential Design

<table>
<thead>
<tr>
<th>First Ultimatum Bargaining</th>
<th>Group Size</th>
<th># of Subjects per Session</th>
<th>Second Ultimatum Bargaining</th>
<th>Group Size</th>
<th># of Subjects per Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-on-One</td>
<td>1</td>
<td>28†</td>
<td>Majority Rule</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Majority Rule</td>
<td>3</td>
<td>24</td>
<td>One-on-One</td>
<td>1</td>
<td>24</td>
</tr>
</tbody>
</table>

†: Four subjects were randomly excluded after the one-on-one session in order to have an even number of groups in the group-on-group ultimatum bargaining.

Unanimity with Rejection Default (URD): An offer is considered accepted when every member of the responder group votes to accept it. Otherwise it is considered rejected.

Unanimity with Acceptance Default (UAD): An offer is considered rejected when every member of the responder group votes to reject it. Otherwise it is considered accepted.

Majority Rule (MR): An offer is considered accepted when at least two members of the responder group vote to accept it. Otherwise it is considered rejected.

As a control treatment, we use a standard one-on-one ultimatum bargaining, where an agent, the proposer, suggests a division of a fixed amount of money, and a second agent, the responder, accepts or rejects it. If the responder rejects, no individual receives any pay, and if he accepts, each individual receives the amount specified in the proposal. In total, the voting rules and the control define the 4 treatments of what we shall call the independent design.

In addition, in order to test the model’s prediction that a less (more) aggressive proposer in a one-on-one ultimatum bargaining becomes somewhat more (less) aggressive when playing against groups, we consider a sequential design with two treatments: in the first treatment, a one-on-one ultimatum bargaining is followed by a group-on-group ultimatum bargaining where the responder groups have to decide whether to accept using the majority voting rule. In the second treatment, we reverse the order by having the subjects play majority-rule group-on-group bargaining game before the one-on-one game.

Tables 1 and 2 summarize for each experimental design the treatments, the group size, and the number of subjects per session.
3.2 Design Parameters

This section describes the general experimental procedure.

Participants and Venue. Subjects were drawn from a wide cross-section of undergraduate students at Instituto Tecnológico Autónomo de México (ITAM) in Mexico City. The recruitment was done from among those enrolled in introductory classes, in order to avoid those exposed to higher-level economics courses, such as game theory. Each subject participated in only one session. The experiment was run at ITAM using computers.

Number of Periods. In order to familiarize subjects with the procedures, two practice periods were conducted before the 10 real (affecting monetary payoff) periods. For the sequential design, two practice periods were conducted before the 10 real periods in the first ultimatum bargaining, and one practice period was conducted before the 10 real periods in the second ultimatum bargaining.

Agent Types. For each of the group-on-group treatments, each participant was designated as a member of a type A group (i.e., proposers) or a member of a type B group (i.e., responders). For the one-on-one treatment, each participant was designated either as a type A agent (i.e., proposer) or as a type B agent (i.e., responder) before the beginning of the practice periods. All designations were determined randomly by the computer at the beginning of the experimental session, and remained constant during the entire session. For the sequential design, each participant type was determined at the beginning of a session and preserved across bargaining situations.

Matching Procedure and Group Size. For each of the group-on-group treatments, membership of each group was changed in a random fashion, so that each participant formed part of a new group (of the same type) at the beginning of each period. Each group consisted of three participants. For the one-on-one treatment, a type A agent was paired with a type B agent, and each pairing was randomized for each period. Furthermore, agents did not know who they were paired with in any given period.

Bargaining Procedure. Subjects were informed that they had to bargain over 100 points. For the group-on-group treatments, the task of each pair of groups was to divide 100 points in each period using the following rules: a) group A had to make a final offer of points to group B; b) to make a final offer, each group A member had to write and send an offer via computer, each offer being in the range from 0 to 100 points; c) one of these offers was chosen randomly by the computer as group A final offer to group B; d) upon receiving the final offer, group B members had to decide whether to accept or reject the offer according to the voting rule announced for this session. No communication, except as explicitly discussed in this and next paragraph, was allowed among participants. For the one-on-one treatment a type A agent had to make and send an offer to a type B agent, and after receiving the offer, the type B agent had to decide on his own whether to accept or reject it.
Information Feedback. For the group-on-group treatments, group A members observed only their own offer and the final offer sent to group B. Group B members observed the final offer, but not the other offers made by group A members. At the end of each round, members of both groups were informed whether the final offer was accepted or rejected, the number of individual acceptance and rejection votes (between 0 and 3) in the responder group, and the number of points obtained by their group in that round. For the one-on-one treatment, each agent learned whether the offer was accepted or rejected and her own amount of points obtained for that round.\(^7\)

Payoffs. The final payoff for each treatment in the independent design was determined by randomly selecting one of the 10 real rounds. For the sequential design, the final payoff for each bargaining situation was determined by randomly selecting one round out of 10 real periods of each game played. The pay for the chosen period was calculated as follows: Each group member got $2.6 Mexican pesos (about 23 US cents) for each point obtained by her own group, in addition to the basic amount of $20 pesos (roughly US$1.75) for participation. Thus, each pair of groups effectively bargained over $780 pesos (around US$68 in year 2004 when the experimental sessions were conducted). For the one-on-one treatment, each pair of agents had to bargain over $260 pesos. In the sequential design one period was chosen for each of the games played, so that size of the pie was equal to $780 pesos ($260 pesos) for each game.

\(^7\)Note that the proposer group is observing the decision made by each member of the responder group. Revealing this information could help proposers to update their beliefs about the probability of individual and group rejection, and thus may induce some kind of learning behavior across periods.
<table>
<thead>
<tr>
<th>Offer Range</th>
<th>One-on-One</th>
<th>Majority Rule</th>
<th>Unanimity with Rejection Default</th>
<th>Unanimity with Acceptance Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 50</td>
<td>2.8</td>
<td>0.0</td>
<td>5.7</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>(0)</td>
<td>(29)</td>
<td>(8)</td>
</tr>
<tr>
<td>= 50</td>
<td>11.5</td>
<td>1.6</td>
<td>11.0</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td>(61)</td>
<td>(1)</td>
<td>(56)</td>
<td>(23)</td>
</tr>
<tr>
<td>45 - 49</td>
<td>18.1</td>
<td>5.2</td>
<td>18.4</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>(96)</td>
<td>(5)</td>
<td>(94)</td>
<td>(28)</td>
</tr>
<tr>
<td>40 - 44</td>
<td>28.3</td>
<td>7.3</td>
<td>21.8</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(11)</td>
<td>(111)</td>
<td>(32)</td>
</tr>
<tr>
<td>35 - 39</td>
<td>16.2</td>
<td>20.9</td>
<td>15.1</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td>(86)</td>
<td>(18)</td>
<td>(77)</td>
<td>(30)</td>
</tr>
<tr>
<td>30 - 34</td>
<td>9.1</td>
<td>12.5</td>
<td>10.4</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>(48)</td>
<td>(6)</td>
<td>(53)</td>
<td>(15)</td>
</tr>
<tr>
<td>25 - 29</td>
<td>8.3</td>
<td>38.6</td>
<td>12.0</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>(44)</td>
<td>(17)</td>
<td>(61)</td>
<td>(20)</td>
</tr>
<tr>
<td>< 25</td>
<td>5.7</td>
<td>80.0</td>
<td>5.7</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>(30)</td>
<td>(24)</td>
<td>(29)</td>
<td>(14)</td>
</tr>
<tr>
<td>All Off.</td>
<td>100.0</td>
<td>15.5</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Statistics</td>
<td>Avg.</td>
<td>40</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Med.</td>
<td>40</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Var.</td>
<td>145</td>
<td>137</td>
<td>181</td>
</tr>
</tbody>
</table>

Note: The number in parentheses below each percentage represents the number of times the occurrence was observed.
4 Experimental Results

This section compares the experimental results from the four treatments of ultimatum bargaining discussed in the previous section. We concentrate on measuring how different voting rules affect individual and group rejection rates and proposals.

Table 3 describes for the one-on-one treatment the distribution of individual proposals and rejections aggregated across all ten periods. The offer range indicates the amount of points a proposer is willing to give to a responder. Consider, for example, the offer range from 35 to 39. In the one-on-one treatment, the number of proposals within this range was 86 out of a total of 530 offers, 16.2% (86/530). Likewise, the number of offers in this range rejected by the responders was 18, resulting in the empirical rejection rate of 20.9% (18/86).

In the same table, we also provide the data for the group-on-group treatments. As in the one-on-one case, consider the offer range from 35 to 39 for the majority rule treatment. The total number of individual proposals within this range was 77, which makes up 15.1% of the total of 510 offers in this treatment. Since just 1 out of 3 proposals was randomly chosen to be sent to a responder group, the group proposals are simply a random selection of the individual ones. The number of group proposals within this range was 30 out of a total of 170 offers sent. Therefore, the group offers proportion was 17.6% (30/170). Since all 3 members of a responder group received the same offer, the individual rejection number within this range was 29; with a total of 90 observations (30×3), the individual rejection rate for this range was 32.2% (29/90). At group level, the number of rejections within this range was 10 out of 30, resulting in a 33.3% (10/30) group rejection rate. At the bottom of Table 3 some summary statistics are shown for the offers made and rejected.

4.1 Responder Behavior

We begin by checking whether individual voting behavior and group rejection rates differ across treatments, conditional on the offer size. In particular, the model suggests that individual rates of voting for rejection should not differ across different treatments and that the group rejection rate for unanimity with rejection default should be higher than for the one-on-one treatment, and these two higher than for the unanimity with acceptance default. Meanwhile, majority rule rejection rate should be higher than for the one-on-one treatment for \(P(x) < 1/2 \) and lower, otherwise.

In what follows we separately analyze the individual and group decisions. At individual level, each individual decision to accept (or vote to accept) or to reject (or vote to reject) a specific offer is treated as one decision outcome, while at group level, a decision outcome is each group decision to accept or to reject an offer. At each level we have a total of six different treatments for which we observe rejection behavior: i) decisions to accept/reject
by individuals who played a one-on-one ultimatum bargaining only; \(^8\) ii – iv) decisions by individuals/groups who played a group-on-group ultimatum bargaining under a specific voting rule only; v) decisions by individuals who played a one-on-one ultimatum bargaining having previously experienced playing group-on-group ultimatum bargaining under the majority voting rule; and vi) decisions by individuals/groups who played a group-on-group ultimatum bargaining under the majority voting rule having previously experienced playing one-on-one ultimatum bargaining game.

Subjects played multiple rounds of the bargaining game and each individual’s actions over time are clearly not independent. For this reason, as well as for comparison with such earlier studies as Bornstein and Yaniv [2] and Messick et. al. [18], in which subjects played the game only once, we initially attempted to test our hypotheses using only data from a single period. However, the results of our statistical analysis using data only from the first period are inconclusive, as are the results using data from the last period.\(^9\)

While we are unable to reject the hypothesis that individual probabilities of voting to reject, conditional on offer size, are the same across the treatments, neither do group rejection probabilities vary across treatments in a statistically significant way. But if agents’ individual voting behavior is the same in different treatments, this immediately implies that the group outcomes have to be different. Simply plugging numbers into a formula in section 2 one would observe that if the probability of individual voting to reject a given offer is, say 25%, then under unanimity with acceptance default the three-person group will only reject with less than 2% probability, while the unanimity with rejection default will result in the rejection probability of nearly 58%. Since the two sets of coefficients cannot simultaneously be equal to zero, no matter the actual behavior of individuals, we infer that our sample size is insufficient to make any conclusions from the single-period observations.\(^10\)

In what follows we instead present results of the statistical analysis involving data from all experimental rounds.\(^11\)

We consider the following models for estimating individual and group rejection probabilities:

\(^8\)Here and in case (c) below, group and individual decisions are clearly tautologically the same.
\(^9\)Detailed regression results are available from the authors upon request.
\(^10\)One should note, that our sample size is not particularly small by the literature standards. Thus, Bornstein and Yaniv [2] have only 20 one-on-one and 20 group-on-group observations (they only observe final group decisions). They observe only 2 rejections, making it difficult to make conclusions about rejection probabilities. Our failure to establish significant results using single-period data also closely parallels that of Slonim and Roth [28] in their study of high-stakes ultimatum bargaining. As they discuss in detail, a major problem is the lack of exogenous variation of offers, which makes it hard to estimate the difference in conditional rejection probabilities across treatments from one period data only, without observing many more subjects than is typical in a laboratory experiment.
\(^11\)In doing this we have adjusted our statistical analysis for individual-specific effects. We also report both individual- and group-level results to provide evidence that insignificance of individual-level coefficients is not merely due to insufficient sample size, as in the single-period case.
\[
\Pr(\text{Reject}_i = 1) = F(\text{Intercept} + \beta_{\text{offer}i} \text{Offer}_i + \beta_{\text{urd}} \text{URD} + \beta_{\text{uad}} \text{UAD} + \beta_{\text{mr}} \text{MR} \\
+ \beta_{\text{expog}} \text{EXPGNG} + \beta_{\text{expono}} \text{EXPONO} + \beta_{\text{per}} \text{Per}) \quad (1)
\]

\[
\Pr(\text{Reject}_k = 1) = F(\text{Intercept} + \gamma_{\text{offer}k} \text{Offer}_k + \gamma_{\text{urd}} \text{URD} + \gamma_{\text{uad}} \text{UAD} + \gamma_{\text{mr}} \text{MR} \\
+ \gamma_{\text{mro}} \text{MR} \times \text{Offer}_k + \gamma_{\text{expog}} \text{EXPGNG} + \gamma_{\text{expono}} \text{EXPONO} + \gamma_{\text{per}} \text{Per}) \quad (2)
\]

Model (1) checks whether different voting rules affect individual rejection probability in addition to the offer size, where \(\text{Offer}_i \) is the offer individual \(i \) receives from 0 to 100. Model (2) does the same for group rejection probability, where \(\text{Offer}_k \) is the offer group \(k \) receives from 0 to 100. \(\text{URD}, \text{UAD} \) and \(\text{MR} \) are dummies for each of the voting rules; \(\text{EXPGNG} \) is a dummy for those individuals (or groups members) who played one-on-one ultimatum bargaining having first experienced playing group-on-group ultimatum bargaining under the majority voting rule; \(\text{EXPONO} \) is a dummy for those individuals (or groups) who played group-on-group ultimatum bargaining under the majority voting rule having first experienced playing one-on-one ultimatum bargaining; \(\text{Per} \) is a variable for every period, treating time as a continuous variable; \(F(z) = \frac{1}{1+e^{-z}} \) is the cumulative logistic distribution function; and \(\text{Reject} = 1 \) means that an offer was rejected. We use a random effect logit model to account for individual and group variability. For both models, we expect the offer size coefficient to be less than zero (\(\beta_{\text{offer}} < 0 \) and \(\gamma_{\text{offer}} < 0 \)), meaning that the rejection probability should be lower for higher offers. For model (1), we expect all treatment coefficients to be equal to zero (\(\beta_{\text{urd}} = \beta_{\text{uad}} = \beta_{\text{mr}} = 0 \)). For model (2), we should expect that the unanimity treatment coefficients differ in sign (\(\gamma_{\text{urd}} > 0, \gamma_{\text{uad}} < 0 \)), where a positive coefficient should indicate a higher probability of rejection for a given offer than a negative coefficient. This specification takes into account for majority rule the possibility of higher rejection rates for lower offers and lower rejection rates for higher offers (\(\gamma_{\text{mr}} > 0 \) and \(\gamma_{\text{mro}} < 0 \)).

In Table 4 we present the logit estimations for rejection rate probability at both individual (first column) and group (second column) levels. For each of these models, a \(\chi^2 \) test indicates that the null hypothesis of all the estimated coefficients being equal zero can be rejected for a \(p < 0.0001 \). The offer size coefficients (\(\beta_{\text{offer}} \) and \(\gamma_{\text{offer}} \)) are correct in sign and significant in both models.

For the model at individual level, none of the treatment coefficients (\(\beta_{\text{urd}}, \beta_{\text{uad}} \) and \(\beta_{\text{mr}} \)) show individual significance for a \(p < 0.05 \). A \(\chi^2 \) test indicates that the null hypothesis of \(\beta_{\text{urd}} = \beta_{\text{uad}} = \beta_{\text{mr}} = 0 \) cannot be rejected for a \(p = 0.82 \). Our estimation
Table 4: Probability of Offer Rejection for All Periods: Logit Estimation

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Individual Level</th>
<th>Group Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.168***</td>
<td>6.517****</td>
</tr>
<tr>
<td></td>
<td>(0.618)</td>
<td>(0.921)</td>
</tr>
<tr>
<td>Offer</td>
<td>-0.189***</td>
<td>-0.235***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>Unanimity with Rejection Default</td>
<td>0.234</td>
<td>2.169***</td>
</tr>
<tr>
<td></td>
<td>(0.547)</td>
<td>(0.555)</td>
</tr>
<tr>
<td>Unanimity with Acceptance Default</td>
<td>0.479</td>
<td>-2.878***</td>
</tr>
<tr>
<td></td>
<td>(0.520)</td>
<td>(0.743)</td>
</tr>
<tr>
<td>Majority Rule</td>
<td>0.112</td>
<td>-2.833*</td>
</tr>
<tr>
<td></td>
<td>(0.466)</td>
<td>(1.426)</td>
</tr>
<tr>
<td>Majority X Offer</td>
<td>(-)</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td>(-)</td>
<td>(0.042)</td>
</tr>
<tr>
<td>Experienced Group-on-Group Ultimatum</td>
<td>-0.874</td>
<td>-0.844</td>
</tr>
<tr>
<td>Bargaining</td>
<td>(0.641)</td>
<td>(0.755)</td>
</tr>
<tr>
<td>Experienced One-on-One Ultimatum</td>
<td>0.212</td>
<td>0.212</td>
</tr>
<tr>
<td>Bargaining</td>
<td>(0.655)</td>
<td>(0.978)</td>
</tr>
<tr>
<td>Period</td>
<td>-0.091**</td>
<td>-0.075</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.048)</td>
</tr>
<tr>
<td># of Obs.</td>
<td>1640</td>
<td>900</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-555.9</td>
<td>-264.4</td>
</tr>
</tbody>
</table>

*: p<0.05, **: p<0.01 and ***: p<0.001.
Note: The number in parentheses below each coefficient represent the coefficient standard error.
shows no significance for the subjects’ prior experience playing a different version of the ultimatum bargaining game. In addition, a χ^2 test indicates that the null hypothesis of $\beta_{expog} = \beta_{expno} = 0$ cannot be rejected for a $p = 0.39$. On the other hand, time-period coefficient being different from zero can be rejected for a $p = 0.003$. This indicates that players are willing to reduce the probability of rejection over time. Finally, a χ^2 test indicates that the null hypothesis of the voting rules, experience and time period coefficients being jointly equal to zero can be rejected for a $p < 0.0001$. This result indicates that this model performs better than a specification that does not include these variables, indicating a possible role, at least, for time period in explaining individual rejection probabilities.

Figure 1 shows the expected group rejection probabilities based on the rejection formulas in section 2 and on the individual rejection response, $P(x)$, estimated in model (1), when all dummies are equal to zero and period is equal to five.

For the model at group level, the coefficients for both unanimity treatments (γ_{ard} and
\(\gamma_{uad} \) are significant and have the expected signs. On the other hand, the majority rule coefficients (\(\gamma_{mr} \) and \(\gamma_{mro} \)) exhibit opposite signs to what was expected. Even though the coefficient \(\gamma_{mr} \) is individually significant for a \(p = 0.047 \), a \(\chi^2 \) test result indicates that the null hypothesis of \(\gamma_{mr} = \gamma_{mro} = 0 \) cannot be rejected \((p = 0.134) \), indicating that we cannot really distinguish between the on-on-one and the group-on-group majority voting rule treatment in terms of rejection probability. Overall, a \(\chi^2 \) test result indicates that the null hypothesis of \(\gamma_{urd} = \gamma_{uad} = \gamma_{mr} = \gamma_{mro} = 0 \) can be rejected for a \(p < 0.0001 \), favoring the joint significance of these treatment variables. None of the experience treatment and time-period coefficients show individual (or joint) significance for a \(p < 0.05 \). Thus, experience and time do not contribute to explaining group rejection rate variations. Finally, a \(\chi^2 \) test indicates that the null hypothesis of the voting rules, experience and time period coefficients being jointly equal to zero can be rejected for a \(p < 0.0001 \). This result indicates that this model performs better than a specification that does not include...
these variables. Figure 2 shows estimated group rejection probabilities from model (2) and the actual rejection rates for different offer intervals.

Summing up, the rejection probability estimations using the data set from all ten periods show how different voting rules affect individual and group responses in ultimatum bargaining. On one hand, individuals tend to respond by voting in the same way whether they are deciding within a group or alone, which supports our model, as developed in the theory section. In particular, it suggests that we are justified in modeling agents as only caring about the distribution of monetary payoffs. On the other hand, different voting rules affect group rejection probabilities as expected. Not surprisingly, smaller offers result in higher rejection probability. Finally, we observe that time does matter in predicting individual behavior. In particular, the same offers are less likely to be rejected over time. Finally, subjects’ experience playing as a members of a group (or as individuals) does not influence rejection rates when playing as individuals (or as a members of a group). We conclude that our qualitative comparative static predictions for the rejection probabilities seem to hold.

4.2 Proposer Behavior

Given the differences in group rejection probabilities for different voting rules, we should expect changes in offers across treatments. We consider the following specification for estimating the offer size differences across all treatments for all periods:

\[
Offer_i = \text{Intercept} + \alpha_{urd}URD + \alpha_{uad}UAD + \alpha_{mr}MR + \delta_{per}Per \\
+ \delta_{perurd}Per \times URD + \delta_{peruad}Per \times UAD + \delta_{permr}Per \times MR \quad (3)
\]

where \(Offer_i\) is the offer proposer \(i\) sent from 0 to 100; \(Per\) is the period time in which an offer was made; \(URD, UAD\) and \(MR\) are dummies for each of the voting rules. We expect the offer size coefficient for unanimity with rejection default to be greater than zero \((\alpha_{urd} > 0)\), meaning that compared to the one-on-one treatment proposers should be willing to offer more given the high rejection probability behind this voting rule. For unanimity with acceptance default, we should expect a coefficient less than zero \((\alpha_{uad} < 0)\), which means that compared to the one-on-one treatment proposers should be willing to offer less given the low probability of rejection. Compared to the one-on-one treatment, proposers facing majority rule should be willing to offer less when \(P(x) < \frac{1}{4}\) and more otherwise. Therefore, it is difficult to predict the coefficient sign associated to this treatment.\(^{12}\) This specification allows also the possibility of a different dynamic

\(^{12}\)We also considered a specification introducing dummies for subjects who experience making offers under different bargaining situations. However, the corresponding coefficients were not jointly different from zero for a \(p < 0.05\).
within each treatment.

For the one-on-one and majority rule, some subjects’ offers were excluded from the statistical analysis. For the one-on-one case, one subject was excluded: a subject that offered 100 for 8 consecutive periods and then 45 twice. After excluding this subject, we consider 520 individual offers out of a total of 530. For the majority rule, offers of two subjects were excluded: one subject that offered 5 times more than 90 then 50 and then 4 times less than 15, and one that offered 5 times more than 90, twice between 70 and 80, twice at 50 and then offered 1. After excluding these subjects, we consider 490 individual offers out of a total of 510 individual offers. For both unanimity treatments, no subjects offers were excluded.

Table 5 shows the results of the random effect estimation. Our estimation shows that the time period coefficient (δ_{period}) is significant for a $p < 0.001$, implying that proposers were willing to offer less over time. The unanimity with rejection default coefficient is different from zero ($p < 0.001$), indicating that proposers tend to offer more than in the one-on-one treatment. The signs of the majority rule and unanimity with acceptance default coefficients are not significantly different from zero for a $p = 0.42$ and $p = 0.33$, respectively. However, a χ^2 test result indicates that the null hypothesis of $\delta_{\text{urd}} = \delta_{\text{uad}} = \delta_{\text{mr}} = 0$ can be rejected for a $p < 0.01$. Our specification allows for a difference in the dynamic within each treatment. A χ^2 test result indicates that the null hypothesis of $\delta_{\text{perurd}} = \delta_{\text{peruad}} = \delta_{\text{permr}} = 0$ can be rejected for a $p < 0.001$, confirming the presence of such difference. In fact, δ_{peruad} is clearly negative (significance at $p < 0.001$), which, compared with the insignificant sign of δ_{uad}, suggests that agents may be moving towards a correct response. Figure 3 shows the estimated offers for each treatment in addition to the average of all individual offers (+/- 2 standard errors).

Summing up the results, our estimations indicate that offers decrease over time; offers are higher for the unanimity with rejection default than for other treatments; offers are not significantly different for the other two voting rules compared to the control treatment; and offers decrease over time in the unanimity with acceptance default.

4.2.1 One-on-One vs. Group-on-Group Majority Rule

Sequential treatment was designed to try to distinguish between the one-on-one and majority group behavior. The same individuals were proposers in both the one-on-one and
Table 5: Proposer Behavior

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>39.146***</td>
</tr>
<tr>
<td></td>
<td>(1.221)</td>
</tr>
<tr>
<td>Period</td>
<td>-0.201***</td>
</tr>
<tr>
<td></td>
<td>(0.075)</td>
</tr>
<tr>
<td>Unanimity with Rejection Default</td>
<td>5.014**</td>
</tr>
<tr>
<td></td>
<td>(2.090)</td>
</tr>
<tr>
<td>Unanimity with Acceptance Default</td>
<td>2.037</td>
</tr>
<tr>
<td></td>
<td>(2.080)</td>
</tr>
<tr>
<td>Majority Rule</td>
<td>-1.135</td>
</tr>
<tr>
<td></td>
<td>(1.401)</td>
</tr>
<tr>
<td>URD × Period</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
</tr>
<tr>
<td>UAD × Period</td>
<td>-0.692***</td>
</tr>
<tr>
<td></td>
<td>(0.140)</td>
</tr>
<tr>
<td>MR × Period</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
</tr>
<tr>
<td># of Obs.</td>
<td>1610</td>
</tr>
</tbody>
</table>

*: p<0.05, **: p<0.01 and ***: p<0.001.

Note: The number in parentheses below each coefficient represent the coefficient standard error.

Table 6: Group-on-Group Majority Rule vs. One-on-One Ultimatum Bargaining

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Average Offer MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>21.275***</td>
</tr>
<tr>
<td></td>
<td>(6.066)</td>
</tr>
<tr>
<td>Average Offer ONO</td>
<td>0.521***</td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
</tr>
<tr>
<td># of Obs.</td>
<td>24</td>
</tr>
</tbody>
</table>

*: p<0.05, **: p<0.01 and ***: p<0.001.
Figure 3: Average Individual Offers and Estimated Offers
majority rule games and our model suggests that we should expect the same participants to make different individual offers in the two bargaining situations. To test this hypothesis we consider the following specification:

\[Offer_{i}^{MR} = \alpha + \beta Offer_{i}^{ONO} \]

where \(Offer_{i}^{MR} \) is the average offer proposer \(i \) made under the group-on-group ultimatum bargaining where the receiver group have to decide whether to accept under the majority voting rule and \(Offer_{i}^{ONO} \) is the average offer proposer \(i \) made in the one-on-one ultimatum bargaining. We should expect the offer size coefficient under the one-on-one ultimatum bargaining be greater than zero and less than one \((1 > \beta > 0)\), meaning that those individuals that were less (more) aggressive as proposer in a one-on-one ultimatum bargaining becomes somewhat more (less) aggressive when playing against groups, and vice versa.\footnote{This does not mean that agents “aggressiveness ranking” should switch - the same agents would be making relatively high (respectively, relatively low) offers in both situations.}

Table 6 shows estimation for this specification.\footnote{We also evaluated another model specification where a dummy variable for the order in which agents played the games is considered. For this specification, we could not reject the null hypothesis that this coefficient was different from zero for a \(p = 0.41 \). Therefore, the order in which agents find themselves in different bargaining situations does not contribute to explaining offer variation.}

Figure 4: Average Individual Offers
average offer coefficient (β) is significant for a $p < 0.001$. We could reject the null hypothesis that this coefficient was greater than or equal to one (less than or equal to zero) for a $p < 0.001$. This result is consistent with the expected changes in the individual average offers across bargaining situations. Figure 4 shows for each individual his/her average offers under each of the bargaining situations (note our regression crossing the 45° line).

5 Conclusions

In this paper we provide a comparison between four different treatments of ultimatum bargaining: the one-on-one bargaining and three different group-on-group games differentiated by the controlled decision rule used on the responder side to agree on acceptance or rejection. The results of our experiments seem to support the following conclusions:

We cannot reject the hypothesis that individual responder behavior is the same in all four treatments. The willingness to reject low offers clearly suggests existence of a non-monetary component in individual payoffs. The absence of difference between the behavior inside and outside the group suggests that this behavior could be fully explained by assuming that agents care about the distribution of monetary payoffs among the bargainers (possibly, due to their dislike of being treated unfairly). The individual responder behavior does generate statistically significant differences in group responder behavior, implying that proposers should adjust their offers depending on the treatment.

We can reject the hypothesis that the proposer behavior is the same in all four treatments. In particular, in the unanimity with rejection default treatment proposers are clearly substantially more cautious than in other treatments, which indicates that they correctly respond to the increased difficulty of obtaining acceptance of their proposals.

We also observe differences in proposers’ behavior between the one-on-one bargaining and the other treatments of group bargaining. In particular, while in the unanimity with acceptance default treatment we fail to observe proposers to be on average more aggressive initially, we do observe them becoming more aggressive with time. One reason for this delay may be that, though the observed difference in responder behavior between the unanimity with acceptance default and the one-on-one treatments is not statistically significant, the realization of the individual conditional rejection probability in this treatment happened to be somewhat high in initial rounds, possibly “training” the agents to behave somewhat more cautiously. Furthermore, results of our sequential treatment suggest that individual behavior between one-on-one and majority rule treatments is varying in a predicted fashion.

It is suggested by the previous discussion that proposers may be best-responding to empirical rejection probabilities they face. Furthermore, there does seem to be evidence that agents learn the “correct” behavior over time. Further research is needed to establish exactly the nature of this learning process and how it responds to the empirical rejection.
6 Appendix 1: Experimental Instructions

The following is the verbatim translation (from Spanish into English) of experimental instructions administered to subjects at ITAM (the Spanish original is available from the authors upon request).

6.1 Instructions Group-on-Group

This is an experiment about decision-making. The instructions are simple and if you follow them carefully and take good decisions, you can earn a CONSIDERABLE AMOUNT OF MONEY, which will be PAID YOU IN CASH at the end of the experiment.

General Proceedings

In this experiment you will participate as a member of a GROUP A or a GROUP B. Your participation as a part of one of these two groups shall be determined at the beginning of the experiment and will be constant during the entire session. Each group shall consist solely of three (3) participants.

The experiment shall consist of 12 periods: two practice periods, and 10 periods played for money, one of which shall be randomly selected at the end of the experiment to determine your final pay. For this reason you should consider each period as if it were “the chosen period” for your pay.

At the beginning of each period, each TYPE A GROUP will interact with a TYPE B GROUP. The formation of pairs of GROUPS A and B will be done randomly. Likewise, the membership composition of each group will change in a random fashion, so that each participant will form a part of a new GROUP (of the same type) at the beginning of each period.

Specific Proceedings

In each period the task of each pair of groups is to try to divide 100 points using the following rules.

1) The members of GROUP A must make an offer of points to members of GROUP B.

1.1) To make the final offer from GROUP A to GROUP B each member of GROUP A must write and send an offer via the computer. Each offer must be in the range of 0 to 100 points.

1.2) After that, one of these offers made shall be chosen randomly by the computer as the final offer of GROUP A to GROUP B.

2) The final offer of GROUP A shall be sent to each member of GROUP B. After observing the offer sent, the members of GROUP B must decide if they accept or reject the offer according to the following rule:

The offer is considered accepted when every one of the members of the group votes to accept it. Otherwise it is considered rejected.\footnote{This corresponds to Unanimity with rejection default; instructions for other treatments are as follows.
Unanimity with acceptance default:
“The offer is considered rejected when every one of the members of the group votes to accept it. Otherwise it is considered accepted”.
Majority rule:
“The offer is considered accepted when at least two of the members of the group vote to accept it. Otherwise it is considered rejected.”}

2.1) If GROUP B rejects the offer, no GROUP receives any pay.

2.2) If GROUP B accepts the offer, the GROUP A receives the amount of 100 points minus the points offered to GROUP B. In its turn, GROUP B receives the amount of points which has been offered by GROUP A.
3) Once taken, the decision to accept or reject the offer of points is final, no counter-offer shall be possible, and the next period shall start with a new grouping of participants for each group type.

Payment Proceedings

Once the 10 periods played for money are over, one of them will be chosen randomly to determine the final pay. For this reason, you should consider each period as if it were final “chosen period” for your pay.

The pay for the chosen period shall be calculated as follows: Each member of each group shall get $2.6 pesos for each point obtained by the group to which she/he belongs, in addition to the basic amount of $20 pesos for participation.

At the end of the session, each of the participants shall be called by the identification number assigned by the computer at the beginning of the experiment to receive his/her pay in a sealed envelope, thus ensuring the complete anonymity of his/her decisions and their results.

6.2 Instructions One-on-One

This is an experiment about decision-making. The instructions are simple and if you follow them carefully and take good decisions, you can earn a CONSIDERABLE AMOUNT OF MONEY, which will be PAID YOU IN CASH at the end of the experiment.

General Proceedings

In this experiment you will participate as a TYPE A or TYPE B AGENT. Your participation as one of these agent types shall be determined at the beginning of the experiment and will be constant during the entire session.

The experiment shall consist of 12 periods: two practice periods, and 10 periods played for money, one of which shall be randomly selected at the end of the experiment to determine your final pay. For this reason you should consider each period as if it were “the chosen period” for your pay.

At the beginning of each period, each TYPE A AGENT will interact with a TYPE B AGENT. The formation of pairs of TYPE A and TYPE B AGENTS will be done randomly.

Specific Proceedings

In each period the task of each pair of agents is to try to divide 100 points using the following rules.

1) Each TYPE A AGENT must make an offer of points to a TYPE B AGENT. For this each TYPE A AGENT must write and send an offer via the computer. Each offer must be in the range of 0 to 100 points.

2) After observing the offer sent by the TYPE A AGENT, the TYPE B AGENT must decide if she/he accepts or rejects it.

 2.1) If the TYPE B AGENT rejects the offer, no AGENT receives any pay.

 2.2) If TYPE B AGENT accepts the offer, the TYPE A AGENT receives the amount of 100 points minus the points offered to TYPE B AGENT. In its turn, TYPE B AGENT receives the amount of points which has been offered by TYPE A AGENT.

3) Once taken, the decision to accept or reject the offer of points is final, no counter-offer shall be possible, and the next period shall start with a new grouping of agent pairs.

Payment Proceedings

Once the 10 periods played for money are over, one of them will be chosen randomly to determine the final pay. For this reason you should consider each period as if it were final “chosen period” for your pay.
The pay for the chosen period shall be calculated as follows: Each agent shall get $2.6 pesos for each point obtained, in addition to the basic amount of $20 pesos for participation.

At the end of the session, each of the participants shall be called by the identification number assigned by the computer at the beginning of the experiment to receive his/her pay in a sealed envelope, thus ensuring the complete anonymity of his/her decisions and their results.

* * *

In the sequential treatment, after the completion of the first 10 rounds the subjects were asked to move to a next-door classroom, while the computers were being reinitialized. The subjects were monitored throughout and no communication was allowed. When the subjects returned to the room where the experiment was being conducted, the appropriate instructions were read to them in their entirety before proceeding.
References

