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Hervé Roche

Departmento de Administración, Instituto Tecnológico Autónomo de México, Av. Camino a Santa Teresa
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Abstract

We re-examine the representative agent’s optimal consumption and savings under

uncertainty in the presence of investment constraints using martingale representation and

convex analysis techniques. This framework allows us to explicitly quantify precautionary

savings which induces a higher average growth rate than in a certainty setup. We provide a

closed form solution for a Cobb–Douglas economy. The effect of uncertainty on portfolio

selection is analyzed. Consumption growth rate and risk free interest rate exhibit a U-shaped

relationship. Uncertainty negatively affects expected consumption growth rate; such a result

seems to be supported by empirical evidence.
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1. Introduction

We re-examine the representative agent’s optimal consumption and savings under
uncertainty in the presence of investment constraints. Levhari and Srinivasan [10],
Brock and Mirman [3], and Levhari [11], using dynamic programming techniques
(DPT) to derive the necessary conditions that optimal policies need to satisfy, are
among the pioneers to study the properties of the optimal consumption and
investment policy functions within a discrete-time, neoclassical one-sector model. In
a continuous time framework, Bourguignon [2] and Merton [13] compute the steady-
state distributions of the capital–labor ratio, interest rate, per capita consumption

ARTICLE IN PRESS

E-mail address: hroche@itam.mx.

0022-0531/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0022-0531(03)00119-4



and output, etc. Obstfeld [14] studies the impact of risk diversification on economic
growth. All these authors use the primal approach that leads to solving a highly non-
linear Hamilton Jacobi Bellman equation, which in few cases can be explicitly
worked out with a lucky guess. An alternative approach to DPT is the work by
Bismut [1] who uses extended Hamiltonian techniques to deal with intertemporal
optimal allocation in presence of risks.
We derive results using a duality approach in the presence of constraints that relies

on martingale representation and convex analysis techniques similar to those
exposed in [4–6]. In particular, it is worth noting that the methodology applies for
incomplete markets. The dual program turns out to be much easier to analyze than
the primal program. For a general dynamic framework, we are able to explicitly
quantify precautionary savings as a function of the relative risk aversion and relative
prudence ratios, generalizing the Drèze-Modigliani [7] ‘‘substitution effect’’ and
Kimball’s results [9]. We show that investment constraints reduce precautionary
savings and thus the consumption growth rate. When the technology is Cobb–
Douglas and preferences exhibit CRRA, the portfolio analysis confirms the Levhari
and Srinivasan [10] conjecture according to which ‘‘when the variance of an asset is
increased keeping its mean constant, the optimal proportion invested in this asset
goes down.’’ Moreover, the savings rate responds positively to an increase in
uncertainty exactly when the coefficient of relative risk aversion is above unity,
reflecting consumption smoothing. The expected consumption growth rate and the
risk-free interest rate exhibit a U-shaped relationship. As the risky technology
becomes more volatile or the individual is more risk averse, the risk-free technology
tends to be preferred. We extend the analysis to the autarky case when only a risky
technology is available.

2. The general economic setting

We consider a continuous-time economy with a finite horizon T in which a
representative agent has to choose an optimal consumption and investment policy.

2.1. The Economy

Information structure. Uncertainty is modeled by a probability space ðO;F;PÞ on
which is defined an n-dimensional (standard) Brownian motion w: A state of nature
o is an element of O: F denotes the tribe of subsets of O that are events over which
the probability measure P is assigned. Let Ft be the s-algebra generated by the
observations of w and augmented. The filtration F ¼ fFt; tA½0;T �g is the
information structure and satisfies the usual conditions (increasing, right-contin-
uous, augmented).

Individual preferences. There is a single perishable good available for consumption,
the numéraire. Preferences are represented by a time additive utility function

UðcÞ ¼ E

Z T

0

uðcðtÞÞe�yt dt

� �
;
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where the instantaneous utility function u is twice continuously differentiable,
increasing and strictly concave and y denotes the subjective discount rate of future.
In addition, u satisfies the following Inada conditions: limc-0þ u0ðcÞ ¼ N and
limc-N u0ðcÞ ¼ 0:

The financial market and the technology. The financial market consists only in a
locally risk-free bond whose price B evolves according to the following equation
dBðtÞ ¼ rðtÞBðtÞdt; where r is the international interest rate. Alternatively, one may
interpret the risk-free asset as a linear storage technology. The real sector is modeled
by a production function F : Rn

þ � Rþ-Rþ that uses n different types of inputs ki

and is affected by a shock a: F is assumed to be increasing and jointly concave in its n

first arguments. In the sequel, k ¼ ðk1;y; knÞ (respectively K ¼ ðK1;y;KnÞ)
denotes the vector of quantity (respectively value) of capital inputs, with Ki ¼ piki:
Input prices p and the real shock a are assumed to be non-negative Ito processes.
The total wealth W is the sum of the value of inputs and the value X invested into

the bond, i.e. W ¼ K? %1þ X : The economy starts with some positive wealth W040:
Investment constraints. Input quantities must be positive. More generally, we

require ðX ;KÞ to be in a convex closed set QDRnþ1: When borrowing is prevented,
Q ¼ Rþ � Rn; when borrowing is allowed up to a maximum fraction M40 of the

wealth, Q ¼ fðX ;KÞAR� Rn
þ;

�X1fXp0g
W

pMg1 (maximum borrowing ratio).

Feasibility. A consumption plan c is feasible if there is a couple ðX ;KÞAQ such that

dW ðtÞ ¼ ðFðKðtÞ=pðtÞ; aðtÞÞ þ rðtÞXðtÞ � cðtÞÞ dt þ KðtÞ?sðtÞ dwðtÞ;

WðtÞX� W and WðTÞX0:

Short-term deficits up to a maximum WX0 are allowed but the country must end up
with no debt. The diffusion term encapsulates differences between what can be
foreseen, E½dW ðtÞ jFt� and what is actually realized dW ðtÞ: It can be considered as a
stochastic adjustment cost equal to zero on average. The linearity of the diffusion
term is important both for existence and tractability reasons. Let C denote the set of
feasible consumption plans.
Technical restrictions on the stochastic processes r; c; X ; K and s to ensure existence

of a solution can be found in [3]. We now examine the representative agent problem.

2.2. The representative agent problem

The representative agent maximizes her expected discounted life time utility:

max
ðcAC;ðK ;X ÞAQÞ

E
R T

0 uðcðtÞÞe�yt dt
h i

s:t: dW ðtÞ ¼ ðFðkðtÞ; aðtÞÞ þ rðtÞXðtÞ � cðtÞÞ dt þ KðtÞ?sðtÞ dwðtÞ
WðtÞX� W ;WðTÞX0;W0 given:

ð1Þ
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2.3. The dual approach

We use a dual approach to convert the (primal) dynamic problem into an
equivalent (dual) static problem. The methodology relies on convex duality
techniques developed by Cvitanic and Karatzas [5] and Cuoco and Cvitanic [4].

Effective domain. For ðn0; nÞAR� Rn; define eðn0; nÞ ¼ supðX ;KÞAQ FðK=p; aÞ �
n0X � n?K : The effective domain of F is N ¼ fðn0; nÞAR� Rn : (MAR; 8ðn0; nÞ;
eðn0; nÞpMg: It is a closed convex set. eðn0; nÞ can be interpreted as an instantaneous
profit. The effective domain is the set of pseudo price vectors ðn0; nÞ compatible with
a finite profit.
Then, for ðn0; nÞAN; define the exponential martingale

xnðtÞ ¼ exp

Z t

0

�jjknðuÞjj2

2
du þ knðuÞ? dwðuÞ

 !
;

with2 knðtÞ ¼ �s�1ðtÞðnðtÞ � ðrðtÞ þ n0ðtÞ%1Þ; the discount factor

bnðtÞ ¼ exp

Z t

0

�ðrðuÞ þ n0ðuÞÞ du

	 

;

and pnðtÞ ¼ bnðtÞxnðtÞ which is interpreted in the sequel as a state price density.

Finally, let ũðy; tÞ ¼ maxcX0 uðc; tÞ � yc denote the convex conjugate of uðc; tÞ ¼
uðcÞe�yt:
Under some concavity conditions which are satisfied here, it is enough to

determine the saddle point ðc�;c�; ðn�0; n�ÞÞ of the functional

Lðc;c; ðn0; nÞÞ ¼E

Z T

0

uðcðtÞÞe�yt dt

� �

� c E

Z T

0

pnðtÞ cðtÞ � eðn0ðtÞ; nðtÞÞð Þ dt

� �
� W0

	 


to solve the primal program. The maximization over c yields u0ðc�ðtÞÞe�yt ¼ cpnðtÞ;
and the dual program is:

min
ðc;ðn0;nÞÞARþþ�N

E

Z T

0

ũðcpnðtÞ; tÞ dt

� �

þ cE

Z T

0

pnðtÞeðn0ðtÞ; nðtÞÞ dt

� �
þ cW0: ðDPÞ

In general, it is not possible to obtain an explicit solution of this program. However,
the task is easier when e equals zero; it is in particular the case when the production
function is homogenous of degree one and N is a cone. We now turn to the main
result of the paper.
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Theorem 1. Assume that u000 exists and is positive. Denoting ARðcÞ ¼ �u00ðcÞ
u0ðcÞ

RRðcÞ ¼ �cu00ðcÞ
u0ðcÞ

� �
the absolute (relative) risk aversion ratio and APðcÞ ¼ �u000ðcÞ

u00ðcÞ

RPðcÞ ¼ �cu000ðcÞ
u00ðcÞ

� �
the absolute (relative) prudence ratio, the evolution the optimal

consumption level c� (expected growth rate of consumption g�) is governed by the

absolute (relative) risk aversion and prudence ratios. In particular, in presence of

uncertainty, g� is higher than in the classical Ramsey model [16].

Proof. The optimal condition is u0ðc�ðtÞÞe�yt ¼ cpn� ðtÞ: Set Bn� ðtÞ ¼ cpn� ðtÞeyt and

c�ðtÞ ¼ ðu0Þ�1ðBu� ðtÞÞ: By Ito’s lemma,

dBu� ðtÞ ¼ ðu0Þ�1ðc�ðtÞÞððrðtÞ þ n�0ðtÞ � yÞ dt þ kn� ðtÞ? dwðtÞÞ:

Then, since dðu0Þ�1
dx

ðu0ðxÞÞ ¼ 1
u00ðxÞ and

d2ðu0Þ�1
dx2 ðu0ðxÞÞ ¼ � u000ðxÞ

ðu00ðxÞÞ2; it follows that

dc�ðtÞ ¼ 1

ARðc�ðtÞÞ ½rðtÞ þ n�0ðtÞ � y� dt þ 1

2

APðc�ðtÞÞ
ðARðc�ðtÞÞÞ2

jjkn� ðtÞjj2 dt

þ 1

ARðc�ðtÞÞ kn
� ðtÞ? dwðtÞ: ð2Þ

Hence

g�ðtÞ ¼ 1

RRðc�ðtÞÞ ðrðtÞ þ n�0ðtÞ � yÞ þ 1

2

RPðc�ðtÞÞ
ðRRðc�ðtÞÞÞ2

jjkn� ðtÞjj2: ð3Þ

The condition WðtÞX� W implies that n�0ðtÞX0: The growth rate for the Ramsey

model can be obtained from the previous relationship by setting n�0 ¼ 0 and kn� ¼ 0

[16]. Since u00040; we have RP40 and the desired conclusion follows. &

As highlighted by Kimball [9] and Levhari [11] for a two-period framework, when
the marginal utility function is convex ðu00040Þ; agents have a prudent attitude and
aim at preparing and forearming themselves in the face of uncertainty. This is the

precautionary savings motive quantified here by the term 1
2

RPðc�ðtÞÞ
ðRRðc�ðtÞÞÞ2 jjkn� ðtÞjj

2 in

relationship (3). Prudence enhances precautionary savings whereas risk aversion
reduces it. This result is to be related with the Drèze–Modigliani ‘‘substitution
effect’’ [8]: in a two period model, ‘‘the reduction in first period consumption is larger
than what one would expect by looking at the reduction in utility caused by income
risk when preferences for second period consumption display decreasing absolute
risk aversion’’ [9, p. 65]. In the framework presented here, it can be shown that if
u0000o0 or RP is a decreasing (increasing) function and RPðcÞoRRðcÞ
ðRPðcÞ4RRðcÞÞ; then precautionary savings decreases (increases) with the level of
consumption c: Agents can choose to reduce current consumption to save more to
hedge against uncertainty. Higher savings lead to more growth. Using numerical
methods, Zeldes [17] shows that in presence of transitory income, consumption
displays an excess sensitivity, g� is too high and c� is too low.
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3. Application

Assumption (A1). uðc; tÞ ¼ e�yt ln c and a; p; r; s are stochastic processes,or u can be
any utility function but a; p; r; s are deterministic functions of time only.

3.1. Preliminary results

Proposition 2. When the production function is homogenous of degree one, the set of

constraints is a cone and preferences satisfy (A1), the dual program (DP) is fully

characterized by the following relationships

E

Z T

0

ũcðc�pn� ðtÞ; tÞpn� ðtÞ dt

� �
þ W0 ¼ 0; ðiÞ

ðn�0; n�Þ ¼ arg min
ðn0;nÞAN

1

2
jjknjj2 þ n0: ðiiÞ

Proof. Condition (i) comes straightforwardly from the fact that 8ðn0; nÞAN;
eðn0; nÞ ¼ 0 and the minimization with respect to the parameter c:

Logarithmic preferences. ũðy; tÞ ¼ �e�ytð1þ yt þ ln yÞ and we have to solve

min
ðc;ðn0;nÞÞARþþ�N

E

Z T

0

e�yt

Z t

0

jjknðuÞjj2

2
þ n0ðuÞ þ rðuÞ

 !
du

 !
dt

" #

� 1� e�yT

y
ln cþ cW0:

The solution is given by minimizing with respect to c and by minimizing pointwise

with respect to ðn0; nÞ the functional ðn0; nÞ/jjknjj2
2

þ n0:
Deterministic coefficients. Given c the minimization problem is

min
ðn0;nÞAN

E
R T

0 ũðcpnðtÞ; tÞ dt
h i

s:t: dpnðtÞ ¼ pnðtÞ½�ðrðtÞ þ n0ðtÞÞ dt þ knðtÞ? dwðtÞ�:

Define Jðpn; tÞ ¼ minðn0;nÞAN E½
R T

t
ũðcpnðsÞ; sÞ ds jFt�: Then J satisfies the Hamilton

Jacobi Bellman (HJB) equation:

0 ¼ Jtðpn; tÞ þ min
ðn0;nÞAN

ũðcpn; tÞ � Jpðpn; tÞpnðr þ n0Þ þ
1

2
Jppðpn; tÞp2n jjknjj

2:

Because ũ is strictly convex and decreasing, J is strictly convex and decreasing so

Jpo0 and Jpp40: Hence, the minimum is achieved exactly when n0 and n/jjknjj2
2

are

minimum. Note that n� is a deterministic process. &

For ðn0; nÞ given, a complete characterization of the optimal policies is provided in
Appendix A when preferences satisfy Assumption (A1).
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Investment constraints and consumption growth rate. The more constraints imposed
on capital inputs, the smaller is the set Q and consequently the larger is the effective

domain N: Therefore, the functional ðn0; nÞ/jjknjj2
2

þ n0 can achieve a lower value so
does g�: Thus, the more restrictions on capital inputs, the smaller precautionary savings

are and consequently the lower the consumption growth rate.

3.2. CRRA preferences and Cobb–Douglas technology

Using relationship (3) when uðc; tÞ ¼ c1�b�1
1�b

e�ytðb40Þ leads to

g�ðtÞ ¼ 1

b
rðtÞ � yþ ð1þ bÞ

2b
jjkn� ðtÞjj2

� �
:

In the sequel, we assume that the production sector uses a Cobb–Douglas technology

with two inputs y ¼ Fða0; k1; k2Þ ¼ a0ka
1k1�a

2 : Alternatively, y ¼ Fða;K1;K2Þ ¼
aKa

1K1�a
2 ; with a ¼ a0

pa
k1

p1�a
k2

being an aggregator for both real and monetary shocks.

As proved in Appendix B, for Q ¼ fðK1;K2;XÞAR3;K1X0;K2X0g; the effective

domain is N ¼ fðn0; n1; n2ÞAR3 : n0 ¼ 0; n140; n240 : 1pðn1aa
Þ

1
1�að n2

ð1�aÞaÞ
1
ag: To

keep things simple, we assume that s ¼ ½s1
0

0
s2
� is a diagonal matrix.3 The dual

program becomes

min

1pðn1aa
Þ
1

1�að n2
ð1�aÞaÞ

1
a

1

2s21
ðn1 � rÞ2 þ 1

2s22
ðn2 � rÞ2:

The solution of this program is given by Proposition 3.

Proposition 3. When the risky technology is not productive enough, aað1� aÞ1�a
aor;

all the resources are allocated to the risk-free technology. The minimum is achieved for

n�1 ¼ n�2 ¼ r; X
W

¼ 1 and g� ¼ r�y
b
: Alternatively, when rpaað1� aÞ1�a

a; the optimal

solution of the Dual Problem is

n�1 ¼
r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4

ls2
1

1�a

q
2

and n�2 ¼
r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4

ls2
2

a

q
2

;

where l is implicitly defined by: 1
1�a ln

rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ4

ls2
1

1�a

q
2aa

þ 1
a ln

rþ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2þ4

ls2
2

a

q
2ð1�aÞa ¼ 0 and

K�
i

W
¼ n�i � r

bs2i
; i ¼ 1; 2:
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g� ¼ 1

b
r � yþ ð1þ bÞ

2b

1

4s21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4

ls21
1� a

s
� r

0
@

1
A

2
2
64

2
64

þ 1

4s22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4

ls22
a

s
� r

0
@

1
A

2
3
75
3
75:

Proof. See Appendix B. &

3.2.1. Comparative statics

Portfolio selection

Proposition 4. When roaað1� aÞ1�a
a; increasing s1 (respectively s2) keeping s2

(respectively s1) constant lowers the proportion of the wealth invested in the risky

asset 1 (respectively risky asset 2).

Proof. See Appendix B. &

This result corroborates Levhari and Srinivasan’s conjecture [10, p. 163] that
‘‘when the variance of an asset is increased keeping its mean constant, the optimal
proportion invested in this asset goes down.’’ In addition, as shown in Appendix B,

@n�j
@si
o0; iaj; which implies that

@ð
K�

j

W
Þ

@si
o0: The proportion of wealth invested in the

risky asset j shrinks as the variance of the risky asset i rises because the marginal
return of asset j decreases when the amount invested in asset i decreases.
Consequently, the proportion of wealth invested into the risk-free asset must
increase.

Uncertainty, risk aversion, consumption growth rate and savings rate

Proposition 5. When roaað1� aÞ1�a
a; uncertainty ðs1; s2Þ has a negative impact on

the consumption growth rate.

Proof. Recall thatN is independent of ðs1; s2Þ so using the envelope theorem we can

write dg�

dsi
¼ @g�

@si
¼ ð1þbÞ

2b2
@jjkn� jj2

@si
¼ �ð1þbÞ

2b2
1
s3

i

ðn�1 � rÞ2o0; i ¼ 1; 2: &

Ramey and Ramey [15] found that countries with higher volatility have a lower
growth. Mendoza [12] also concluded in a negative relationship between growth and
the terms-of-trade volatility in the case of small risk aversion preferences. In
addition, as shown in Appendix A, the ratio consumption over wealth is given by

c�ðtÞ
WðtÞ ¼

Z T

t

exp

Z s

t

�1
b

yþ ðb � 1Þ rðuÞ þ b � 1

2b
jjkn� ðuÞjj2

	 
	 

du

� �
ds

	 
�1

:
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Given what precedes, if rpaað1� aÞ1�a
a; the ratio consumption–wealth ratio

decreases (increases) when uncertainty parameters si; i ¼ 1; 2 rise exactly when
1
b
o1ð1

b
41Þ; reflecting consumption smoothing motives since b equals to the inverse of

the intertemporal elasticity of substitution. Consequently, the more uncertainty, the

higher (lower) the savings rate exactly when 1
b
o1ð1

b
41Þ: Finally, it is easy to check that,

as in the Ramsey model, the consumption growth rate decreases with b if r4y [16].
Interest rate and consumption growth rate. Zeldes [17] points out that the aggregate

consumption growth rate can remain positive for long period of time despite a very
low real interest rate, in contradiction with the predictions of the Ramsey model [16].
Proposition 6 reconciliates the empirical findings of Zeldes.

Proposition 6. Introducing uncertainty leads to a U-shaped relationship between the

real interest rate and consumption growth rate. The latter admits a minimum at r� that

decreases with risk aversion b and the risk magnitude s1 and s2: At r�; the fraction of

wealth invested in the risk-free asset only depends on b and it is increasing in b:

Proof. When rpaað1� aÞ1�a
a then g� ¼ 1

b
½r � yþ ð1þbÞ

2b
jjkn� jj2� andN is independent

of r: Using the envelope theorem leads to dg�

dr
¼ @g�

@r
¼ 1

b
½1� ð1þbÞ

b
½ 1s2

1

ðn�1 � rÞ þ 1
s2
2

ðn�2 �

rÞ��: In Appendix C, we show that r/dg�

dr
admits a unique root denoted r�; decreasing

in b; s1 and s2 and when r ¼ r�; then X
W

¼ b
1þb

: &

At r ¼ r� the fraction of wealth invested in the risk-free asset is increasing in b:
A myopic agent ðb ¼ 1Þ equally splits her wealth between the risk-free asset
and the risky technology. When the coefficients b; s1 and s2 are high, the
individual prefers to rely mainly on the risk-free asset provided that r4r�: The
consumption growth rate is increasing with the interest rate as in the standard
Ramsey model [16].

Autarchy. We consider a closed economy that uses a unique risky technology for
production. This case can be seen as a special case of what precedes by adjusting the
interest rate r in such a way that no resource is devoted to the risk-free technology.

Setting X � 0 yields b ¼ 1
s2
1

ðn�1ðrÞ � rÞ þ 1
s2
2

ðn�2ðrÞ � rÞ: The existence and the unique-

ness of such an interest rate is easy to show as r/ 1
s2
1

ðn�1ðrÞ � rÞ þ 1
s2
2

ðn�2ðrÞ � rÞ is

continuous and strictly decreasing from þN to 0. For the sake of simplicity, we

present the special tractable case where
s2
1

1�a ¼
s2
2

a : Then, we have n�1 ¼ n�2 ¼ aað1�
aÞ1�a

a so r ¼ aað1� aÞ1�a
a � as21b and

g� ¼ 1

b
aað1� aÞ1�a

a � yþ a
bðb � 1Þ

2
s21

� �
:

As a function of b; the growth rate now has a U shape, decreasing when b is small
and increasing when b is large. When preferences admit an expected utility
representation, it is not possible to distinguish the intertemporal substitution of
consumption from risk aversion. A slight adaptation of the example worked out by

ARTICLE IN PRESS
H. Roche / Journal of Economic Theory 113 (2003) 131–143 139



Dumas et al. [8] who uses Kreps–Porteus’ recursive preferences, suggests that the
consumption growth rate is given by

g� ¼ s aað1� aÞ1�a
a � yþ 1� s

s

abs21
2

� �
;

where s is the IES and b is the coefficient of risk aversion. Then, it becomes clear that
the effect of risk aversion is to magnify uncertainty. The cut off point s ¼ 1 (myopic

agent) governs the impact of uncertainty on g�: The term ð1� sÞabs2
1

2
encapsulates

precautionary savings motive. Then, it should come as a no surprise that when
agents’ IES is high enough ðs41Þ; more uncertainty lowers the consumption growth
rate (lower precautionary savings). The opposite applies when ðso1Þ:
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Appendix A

For any deterministic process ðn0; nÞ; the optimal condition, c�ðtÞ�b
e�yt ¼ c�pnðtÞ

implies that WðtÞ ¼ pnðtÞ�1Eð
R T

t
c�1

bpnðsÞ
b�1

b e�
y
b
s ds jFtÞ: The optimal condition on

n0 is: n�0 ¼ 0: Moreover, for tos; pnðsÞ ¼ pnðtÞ expð
R s

t
�ðrðuÞ þ 1

2
jjknðuÞjj2Þ du þ

knðuÞ? dwðuÞÞ: Since kn is a deterministic process, it follows that

WðtÞ ¼ pnðtÞ�
1
bc�1

b

Z T

t

exp

Z s

t

� �1
b

yþ ðb � 1Þ rðuÞ þ b � 1

2b
jjknðuÞjj2

	 
	 

du

� �
ds:

Thus, the Lagrange multiplier c� and the consumption c� are given by

c� ¼ W�b
0

Z T

0

exp

Z s

0

�1
b

yþ ðb � 1Þ rðuÞ þ b � 1

2b
jjknðuÞjj2

	 
	 

du

� �
ds

	 
b

;

c�ðtÞ
WðtÞ ¼

Z T

t

exp

Z s

t

�1
b

yþ ðb � 1Þ rðuÞ þ b � 1

2b
jjknðuÞjj2

	 
	 

du

� �
ds

	 
�1

:
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Finally, by Ito’s lemma, dW ðtÞ ¼ mW ðtÞ dt � W ðtÞ
b
knðtÞ? dwðtÞ for some process mW :

Identifying the coefficients from relationship (1) yields KiðtÞ ¼ niðtÞ�rðtÞ
bs2

i
ðtÞ WðtÞ; i ¼ 1; 2:

When b ¼ 1; direct calculations show that WðtÞ ¼ W0
e�yt�e�yT

1�e�yT pnðtÞ�1 and cðtÞ ¼
y

1�e�yðT�tÞWðtÞ:

Appendix B

The function ðX ;K1;K2Þ/aKa
1K1�a

2 � n0X � n1K1 � n2K2 is homogenous of

degree one so its supremium is finite exactly when it is non-positive. This yields
n0 ¼ 0 and niX0; i ¼ 1; 2:Given K2X0; the first order condition with respect to K1 is:

K1 ¼ ðaa
n1
Þ

1
1�aK2: Plugging back into the objective function provides the desired

conclusion.

Proof of Proposition 3. When aað1� aÞ1�a
apr; the obvious solution is ðn�1; n�2Þ ¼

ðr; rÞ and kn� ¼ 0 as 1pð r
aa
Þ

1
1�að r

ð1�aÞaÞ
1
a: Thus KiðtÞ ¼ 0; i ¼ 1; 2 and XðtÞ ¼ WðtÞ:

When roaað1� aÞ1�a
a; the minimization program can be written as

min
Ap 1

1�a ln n1þ1a ln n2

1

2s21
ðn1 � rÞ2 þ 1

2s22
ðn2 � rÞ2;

where A ¼ 1
1�a lnðaaÞ þ 1

a lnðð1� aÞaÞ: Let l be the Lagrange multiplier associated

with this program. The first-order conditions are 1
s2
1

ðn�1 � rÞ ¼ l
1�a

1
n�
1
; 1
s2
2

ðn�2 � rÞ ¼ l
a
1
n�
2
:

Given l; n�1 ¼
rþ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2þ

4s2
1
l

1�a

q
2

and n�2 ¼
rþ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2þ

4s2
2
l

a

q
2

and l is uniquely determined by the

relationship:

0 ¼ 1

1� a
ln

r þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4ls2

1

1�a

q
2aa

þ 1

a
ln

r þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4ls2

2

a

q
2ð1� aÞa : ðA:1Þ

The rest of the proof follows easily. &

Proof of Proposition 4. SinceN is independent of ðs1; s2Þ using the envelope theorem

implies that 1
s2
1

ðn�1 � rÞ@n
�
1

@s1
þ 1

s2
2

ðn�2 � rÞ@n
�
2

@s1
¼ 0: Since n�i � r; i ¼ 1; 2 are positive,

@n�
1

@s1
and

@n�
2

@s1
must have opposite signs. Recall that 1�a

s2
1

ðn�1 � rÞn�1 ¼ a
s2
2

ðn�2 � rÞn�2: Totally

differentiating with respect to s1 yields

�2ð1� aÞ
s31

ðn�1 � rÞn�1 ¼ �1� a
s21

ð2n�1 � rÞ @n
�
1

@s1
þ 1� a

s21
ð2n�2 � rÞ @n

�
2

@s1
: ðA:2Þ
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The LHS of relationship (A.2) is negative. Since 2n�i � r; i ¼ 1; 2 are positive and
@n�

1

@s1

and
@n�

2

@s1
must have opposite signs, we have

@n�
1

@s1
40: Then from K1

W
¼ n�

1
�r

bs2
1

¼ a
ð1�aÞs2

2

ðn�2 �

rÞn
�
2

n�
1
; it follows that

@lnðK1

W
Þ

@s1
¼ ð 1

n�
2
�r

þ 1
n�
2
Þ@n

�
2

@s1
� 1

n�
1

@n�
1

@s1
: Hence, given what precedes,

@ lnðK1

W
Þ

@s1
o0: &

Appendix C

Preliminary results. Applying the implicit function theorem to relationship (A.1)

shows that r/l0ðrÞ is well defined on I ¼ ð�N; aað1� aÞ1�a
a� and satisfies

1þ
rþ4

l0ðrÞs2
1

1�affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ4

lðrÞs2
1

1�a

q
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ4

lðrÞs2
1

1�a

q þ

1þ
rþ4

l0ðrÞs2
2

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ4

lðrÞs2
2

a

q
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ4

lðrÞs2
2

a

q ¼ 0: It is easy to check that 8rAI ; l0ðrÞo0: By

continuity, lðaað1� aÞ1�a
aÞ ¼ 0: Moreover, since l is monotonic, it admits a limit

in �N: Now, assume that lim�Nl ¼ lARþþ: For g40; we have r þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4lðrÞg

p
¼
�N

�2glðrÞ
r

þ oð1=rÞ; so lim�N n�1ðrÞ ¼ lim�N n�2ðrÞ ¼ 0; which violates

relationship (A.1). Therefore lim�N l ¼ þN: Then, we establish that r/n�i ðrÞ � r;
i ¼ 1; 2 are strictly decreasing functions on I : Define jðrÞ ¼ 2ðn�1ðrÞ � rÞ: Note that

jðrÞ40 and satisfies 0 ¼ 1
1�a ln

2rþjðrÞ
2aa

þ 1
a ln

rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�uÞr2þuðjðrÞþrÞ2

p
2ð1�aÞa ; where u ¼ ð1�aÞs2

2

as2
1

40:

Totally differentiating with respect to r yields 1
1�a

2þj0ðrÞ
2rþjðrÞ þ 1

a

1þ uð1þj0ðrÞÞðjðrÞþrÞþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�uÞr2þuðjðrÞþrÞ2

p

rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�uÞr2þuðjðrÞþrÞ2

p ¼ 0: It

is then easy to check that j0ðrÞo0: Same proof for r/n�2ðrÞ � r: &

Proof of Proposition 5. Given what precedes, r/dg�

dr
¼ 1

b
½1� ð1þbÞ

b
½ 1s2

1

ðn�1 � rÞ þ 1
s2
2

ðn�2 �

rÞ�� is continuous and strictly increasing on I ; lim�N

dg�

dr
¼ �N and dg�

dr
ðaað1�

aÞ1�a
aÞ ¼ 1

b
: Thus, g� has a unique minimum r�; characterized by b

1þb
¼ 1

s2
1

ðn�1ðr�Þ �
r�Þ þ 1

s2
2

ðn�2ðr�Þ � r�Þ: Differentiating both sides with respect to b yields 1

ð1þbÞ2 ¼
d
dr
½ 1s2

1

ðn�1ðr�Þ � r�Þ þ 1
s2
2

ðn�2ðr�Þ � r�Þ�@r�

@b
: Since GðrÞ � d

dr
½ 1s2

1

ðn�1ðr�Þ � r�Þ þ 1
s2
2

ðn�2ðr�Þ �
r�Þ�o0; we have @r�

@b
o0: Using similar arguments leads to @r�

@s1
o0 and @r�

@s2
o0: &
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