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10700 México, D.F.

E-mail: hroche@itam.mx

October 14, 2006

Abstract

Individuals driven by capital accumulation may be reluctant to experience large wealth down-

falls. Implications for optimal consumption and investment policies are explored in a dynamic

setting where wealth is restrained from falling below a fraction of its all-time high. Risky invest-

ment regulates wealth growth and mitigates the ratchet effect of the constraint, and may decrease
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an index for social status.
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1 INTRODUCTION

The desire for wealth accumulation is well established in the literature. According to Max Weber

(1958), “man is dominated by the making of money, by acquisition as the ultimate purpose of his

life. Economic acquisition is no longer subordinated to man as the means for the satisfaction of his

material needs”. The recent explosion and success of capital guarantee funds suggest that investors are

looking for downside protection but at the same time upside potential. Fund trusts and institutions

such as a university or a foundation may also seek asset preservation. When a non-profit organization

receives an endowment and other long-term funding, it has to manage these resources prudently by

establishing a spending policy that accommodates the need for asset protection and portfolio growth.

Usually donors require endowment assets to be kept permanently and prohibit grantees from using or

borrowing against principals. Returns can be used for contributions, or to increase the endowment

assets. The aim of such spending rules is to preserve financial independence and to avoid the purchasing

power erosion over time1. Fund performance is often measured by all-time record levels that seem to be

appealing to people, and high-water marks2 are common in the investment management industry. For

instance, some financial services firms offer their customers the following portfolio insurance strategy:

an investor who stays invested until the fund matures is guaranteed to receive a value equal to the

highest value of the fund ever achieved, even if the fund’s daily value has fallen since its highest point.

In this paper, we analyze the intertemporal investment-consumption rules for an infinite lived

individual maximizing her expected discounted utility under wealth ratcheting. Namely, the agent

does not tolerate losing more than a fixed percentage of her all-time high level of wealth. This

constraint was first introduced by Grossman and Zhou (1993) who argue that a large drawdown

(typically above 25 percent) is often a reason for firing fund managers3.

The key intuition behind most of the results is driven by two effects. First, as in any portfolio
1In the US, trustees and charity professionals who run foundations after a founder’s death are only obliged to spend

as little as 5% a year of the capital. In many foundations, capricious and poorly thought out projects or programs were

undertaken to fulfill the interests of trustee managers not the wishes of the founder (The Economist, May 28th 2005).
2The high-water mark is a target value that can depend on the current asset value of the fund, and it is adjusted due

withdraws, allocated expenses and a contractual growth rate. In the simplest case, the high-water mark is the highest

level the asset has reached in the past.
3Grossman and Zhou’s (1993) examine the problem of maximizing the long term growth rate of expected utility

of final wealth. Their analysis is quite insightful but they do not allow for endogenous withdraws from the fund to

finance intermediate consumption. Cvitanic and Karatzas (1995) extend their work to a more general class of stochastic

processes by developing a martingale approach.
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selection problem under market restrictions, the agent is concerned with hedging motives that in

the future the constraint may be binding. As a benchmark, hedging concerns are addressed in a

simpler framework when the investor is required to maintain her wealth above a fixed floor (foundation

charter requirement). Essentially, risk aversion is enhanced, which leads to smaller stock holdings and

lower consumption plans with respect to the unconstrained case. Both optimal allocations are found

increasing in wealth. Second, the drawdown constraint displays a ratcheting feature since each time

financial wealth reaches a new record high, the minimum floor rises and the restriction becomes more

stringent. The agent has two margins of adjustment at her disposal to regulate the growth of her

wealth: consumption and risky investment. The latter is the most sensitive of the two as it governs

the diffusion component of the wealth process. The optimal solution of the model reflects the trade-

off between consuming today and deferring consumption to take advantage of investing in the stock

market, which may be thwarted by the presence of the ratchet. We derive conditions under which, as

wealth approaches its all-time high, the fraction of wealth invested in stocks decreases and possibly is

set to zero. In this last case, the maximum to date level of wealth is an upper reflecting (absorbing)

barrier if the individual is fairly patient (impatient) with a large (small) intertemporal elasticity of

substitution (IES).

Tracking wealth movements, the optimal consumption policy exhibits a ratcheting behavior and

large drawdowns from its all-time consumption level are prohibited. We emphasize the correspon-

dence between wealth ratcheting and habit formation in the spirit of Duesenberry (1949). This twin

ratcheting is an important result that rationalizes the loss aversion for wealth, in particular for an

investor who delegates the management of her wealth and aims at maintaining her standard of living.

An extension of the basic model embeds the spirit of capitalism by including wealth, an index of social

status, inside the utility function4. Persistent benefits derived from building up status lead to a more

aggressive risky investment policy whereas consumption becomes less appealing.

This paper builds on the dynamic portfolio choice literature. Early works on optimal consumption-

investment allocations in a frictionless market and no borrowing restrictions include Samuelson (1969)

and Merton (1971). Then, attention has been paid on more real world situations where investors

face constraints in their portfolio investments5. In general, the optimal strategy differs from the
4For instance see Baski and Chen (1996) and Smith (2001).
5Cvitanic and Karatzas (1992) and Cuoco (1997) develop a general martingale approach to cope with convex contem-

poraneous constraints on trading strategies which includes the case of incomplete markets and prohibited short sales.

Cuoco and Liu (2000) analyze the optimal consumption portfolio choice problem under margin requirements and eval-

3



unconstrained one as the agent aims at hedging against the constraint (at some cost) since even

though the constraint may not be binding, there is a possibility that it does in the future. Recent

papers focus on portfolio allocations under wealth performance relative to an exogenous benchmark

such as in Browne (2001) or subject to growth objectives required by the decision maker as in Hellwig

(2003). In Carpenter (2000), the fund manager is compensated with a call option on the wealth she

manages with a benchmark index as strike price. The author shows that the option compensation does

not necessarily lead to more risk seeking. Goetzmann, Ingersoll and Ross (2003) study hedge fund

compensation schemes when managers perceive a regular fee proportional to the portfolio asset value

and an incentive fee based on the fund return each year in excess of the high-water mark. Consistent

with empirical evidence, they obtain that a significant proportion of managers compensation can be

attributed to the incentive fee, in particular for high volatility asset funds for which high manager

skills are required.

The paper is also related to the trend of research that strives to provide some alternative to the

usual time separable von Neumann-Morgenstein preferences whose performance has been poor from

an empirical point of view. In particular, such preferences have failed to explain the equity premium

puzzle, i.e. the fact that returns on the stock market exceed on average the return of Treasury

bills by an average of six percentage points. Habit formation preferences such as Sundaresan (1989),

Constantidines (1990), Detemple and Zapatero (1991) postulate that agents not only derive utility

from current consumption but also from consumption history, typically captured by a standard of

living index. However, for tractability reasons, many models assume that the agent derives utility

from the excess between current consumption and the habit level. If the marginal utility at zero is

infinite, the standard of living index acts as a floor level below which current consumption does not

fall. This addictive feature - optimal consumption levels can only increase across time regardless of the

state of the economy- is not supported by empirical evidence. Detemple and Karatzas (2003) address

this issue and investigate the case of finite marginal utility of consumption at zero when imposing a

non-negativity constraint on consumption plans. When the shadow price of consumption is high, the

agent optimally reduces her consumption along with her standard of living and the associated “cost” of

habits as well. An alternative approach proposed by Dybvig (1995) is to ratchet current consumption.

Originally, Duesenberry (1949) emphasized that consumption may not be entirely reversible over time

uate the cost of the constraint. He and Pages (1993) and El Karaoui and JeanBlanc-Picqué (1998) treat the case of

non-negative wealth in presence of labor income. Grossman and Villa (1992) followed by Villa and Zariphopoulou (1997)

study the consumption-portfolio problem for a CRRA investor facing a leverage constraint.
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but instead may increase along with income and decline less than proportionally with it. Dybvig (1995)

formalizes this idea by looking at an extreme form of habit formation where consumption is prevented

from falling over time. With little work, it is possible to extend Dybvig’s analysis and assume that

the agent is intolerant to any decline that exceeds a fixed proportion of her all-time consumption. In

some sense, the model derived here is a mirror problem as we show that imposing ratcheting on wealth

induces a ratcheting behavior on consumption with a strong parallel with Dybvig (1995).

Finally, our model can be seen as an example of extreme loss aversion in wealth since utility can

be defined to be minus infinity if the drawdown constraint is violated. The concept of loss aversion

was first proposed by Kahneman and Tversky (1979 and 1991) and postulates that the impact of a

loss is greater than that of an equally sized gain. Barberis, Huang and Santos (2001) explore the

implications on asset prices of loss aversion by considering an investor who derives utility not only

from consumption but also from changes in the value of her financial wealth. Their model is flexible

enough to allow the degree of loss aversion to be affected by prior investment performance.

The paper is organized as follows. Section 2 describes the economic setting and contains the

derivation and the analysis of the optimal consumption and portfolio allocations. In section 3, we

assess the cost of the drawdown constraint. Section 4 presents an extension of the basic model that

embeds the spirit of capitalism using wealth as a proxy for social status. Section 5 concludes. Proofs

of all results are collected in the Appendix.

2 THE ECONOMIC SETTING

Time is continuous. An infinitely lived investor, who is reluctant to let her wealth fall more than a

fraction of its historical maximum, has to optimally allocate her wealth between a risk-free bond, a

risky asset and consumption.

Individual preferences. There is a single perishable good available for consumption, the numéraire.

Preferences are represented by a time additive utility function

U(c) = E

[∫ ∞

0
u(cs)e−θsds

]
,

where the instantaneous utility function u is twice continuously differentiable, increasing and strictly

concave and θ denotes the subjective time discount rate. In addition, u satisfies the following Inada

conditions: lim
c→0+

u′(c) = ∞ and lim
c→∞

u′(c) = 0. In the sequel, we focus our analysis on an individual
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with constant relative risk aversion preferences

u(c) =

 c1−b

1−b , b 6= 1

ln c, b = 1.

Information structure and financial market. Uncertainty is modeled by a probability space

(Ω,F , P ) on which is defined a one dimensional (standard) Brownian motion w. A state of nature ω

is an element of Ω. F denotes the tribe of subsets of Ω that are events over which the probability

measure P is assigned. Let Ft be the σ-algebra generated by the observations of w {ws; 0 ≤ s ≤ t}

and augmented. At time t, the investor’s information set is Ft. The filtration F = {Ft, t ∈ R+} is the

information structure and satisfies the usual conditions (increasing, right-continuous, augmented). All

the processes considered in the sequel are progressively measurable with respect to F and all identities

involving random variables (respectively stochastic processes) should be understood to hold P − a.s.

(respectively, (Lb× P )− a.e., where Lb denotes the Lebesgue measure on R+).

There are two securities available in the financial market:

- a risk-free bond whose price B evolves according to

dBs = rBsds,

where r is the constant interest rate, and,

- an index modeled by a risky security whose price S follows a geometric Brownian motion

dSs = Ss (µds + σdws) ,

where dws is the increment of a standard Wiener process, µ is the mean return of the stock index S

and σ2 is its instantaneous variance. Let x and z be respectively the amount of dollars invested in the

riskless bond B and risky security S, so that the wealth process W is equal to x + z. A consumption

plan c is feasible if there is a trading strategy (x, z) such that

dWs = (rWs − cs + zs(µ− r))ds + σzsdws,

Ws > −K, (1)

with K > 0. The condition Ws > −K rules out arbitrage opportunities, such as doubling strategies

presented in Harrison and Kreps (1979). Finally, trading strategies (x, z) and consumption plans c

are adapted processes satisfying the standard integrability conditions∫ ∞

0
c2
sds < ∞,

∫ ∞

0
|rxs| ds +

∫ ∞

0
|µzs| ds +

∫ ∞

0
σ2z2

sds < ∞.
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Drawdown constraint. Let Mt = sup
0≤s≤t

{Ws,M0} be the maximum to date t level of wealth. As

introduced in Grossman and Zhou (1993), the drawdown constraint is

Ws ≥ αMs, (2)

for some α in [0, 1]. This constraint indicates that the investor is reluctant to let her wealth fall below

a fraction of its maximum to date. In the investment management industry, a realistic estimate of α

ranges from 75 to 88 percent. In practice, different values of α may apply to different types of traders.

For instance, for proprietary traders (internal hedge fund traders) who invest money belonging to

their company, α can depend on the target amount of money a trader is required to generate during

the year and could be as high as 94 percent.

We first review the main results for the unconstrained problem studied by Merton (1971).

2.1 Benchmark case: Merton problem

Within our financial market framework, the Merton problem (1971) for a CRRA investor is

F (Wt) = max
(c,z)

Et

[∫ ∞

t

c1−b
s

1− b
e−θ(s−t)ds

]
,

subject to the budget constraint (1) and Wt > 0 given. The transversality condition for this problem

is

lim
T→∞

Et

[
F (Wt+T )e−θ(t+T )

]
= 0.

Merton (1971) shows that both the fraction of wealth invested in stocks zf
s

Ws
and the consumption-

wealth ratio cf
s

Ws
are constant and given by

zf
s

Ws
=

µ− r

bσ2

cf
s

Ws
=

1
A

,

where A−1 = θ
b + b−1

b

(
r + (µ−r)2

2bσ2

)
> 0. The (optimal) wealth process W f is a geometric Brownian

motion whose dynamics are

dW f
t = W f

t

(
(r − 1

A
+

(µ− r)2

bσ2
)dt +

µ− r

bσ
dwt

)
.

In order to gain insights about the effects of the drawdown constraint (2), we examine the simpler

consumption-portfolio choice problem where wealth is required to be kept above a fixed minimum floor

adjusted for inflation. In particular, this allows us to isolate and quantify hedging motives.
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2.2 Fixed minimum floor problem

Consider a foundation whose charter stipulates that the endowment αM > 0 adjusted for inflation

with rate λ > 0 cannot be used for expenditures (only the returns are eligible). No other constraint

is assumed regarding the growth objectives of the trust fund of the foundation. At any time t, wealth

Wt must be maintained above a minimum level αMeλt. Let us define Ŵt ≡ Wte
−λt, ĉt ≡ cte

−λt and

ẑt ≡ zte
−λt. Given the linearity of the wealth dynamics and the homogeneity of the utility function,

the investor’s problem can be written

F (Ŵt) = max
(bc,bz)

Et

[∫ ∞

t

ĉ1−b
s

1− b
e−θ′(s−t)ds

]
s.t. dŴs =

(
r′Ŵs − ĉs + ẑs(µ′ − r′)

)
ds + σẑsdws

Ŵs ≥ αM, Ŵt > 0 given,
(P )

where the parameters adjusted for inflation are r′ = r−λ, µ′ = µ−λ, and the adjusted time discount

rate θ′ = θ + (b − 1)λ is assumed to be positive. The transversality condition is the same as before.

We still require A > 0 and in addition we make the following assumptions:

A1. The interest rate r′ is positive.

A2. The Sharpe ratio of the risky asset is positive.

Assumption A1. is required for feasibility. Assumption A2. is made for convenience and without loss

of generality.

First of all, note that the value function F is increasing and concave6 in Ŵ . Then, for Ŵ ≥ αM, the

Hamilton Jacobi Bellman (HJB) equation of this problem is

θ′F = max
(bc,bz)

ĉ1−b

1− b
+
(
r′Ŵ − ĉ + ẑ(µ′ − r′)

)
F ′ +

σ2

2
(ẑ)2F ′′. (3)

The optimal conditions are

ĉ∗ = (F ′)−
1
b

ẑ∗ = −(µ′ − r′)F ′

σ2F ′′
,

and F satisfies the following non-linear ODE

θ′F =
b(F ′)

b−1
b

1− b
+ r′ŴF ′ − 1

2

(
µ′ − r′

σ

)2 (F ′)2

F ′′
. (4)

6The strict concavity of F comes from the fact that the utility function is strictly concave and the constraint is linear

so that if W and W ′are admissible wealth processes, then for all λ in [0, 1], λW + (1− λ)W ′ is also admissible.

8



Lemma 1 The general solution of ODE (4) is such that

Ŵ = A(F ′(Ŵ ))−
1
b + L1(F ′(Ŵ ))

β′1−1

b + L2(F ′(Ŵ ))
β′2−1

b , (5)

where β′1 and β′2 are respectively the positive and negative roots of the quadratic

1
2

(
µ′ − r′

bσ

)2

x2 +

(
1
A
− r′ − 1

2

(
µ′ − r′

bσ

)2
)

x =
1
A

,

and L1 and L2 are two constants to be determined.

Proof. See the Appendix.

Useful results β′1 > 1 and 1− b− β′2 > 0 are proved in the Appendix.

Boundary Condition at the Minimum Floor. At Ŵ = αM , we have

αM = A(F ′(αM))−
1
b + L1(F ′(αM))

β′1−1

b + L2(F ′(αM))
β′2−1

b ,

and in order not violate the constraint with some positive probability in a near future, stock holdings

must be zero, which implies

A = (β′1 − 1)L1(F ′(αM))
β′1
b + (β′2 − 1)L2(F ′(αM))

β′2
b .

When Ŵ is large, the constraint is equivalent to Ŵ ≥ 0, so the solution is equivalent to the one for the

unconstrained case, i.e. F ′(Ŵ ) ∼
∞

Ab(Ŵ )−b. Since β′2−1
b < −1

b , we must have L2 = 0. At Ŵ = αM ,

the consumption-wealth ratio and the constant L1 are given by

c

αM
=

β′1 − 1
β′1A

<
1
A

L1 =
(

αM

β′1

)β′1
(

A

β′1 − 1

)1−β′1
> 0.

Note that at Ŵ = αM , the wealth dynamics are deterministic

dŴt =
(

r′ − β′1 − 1
β′1A

)
Ŵtdt.

It is easy to see that r′ − β′1−1
β′1A

= 1
2

(
µ′−r′

bσ

)2
(β′1 − 1) is positive, which means that wealth bounces

back upward after hitting the minimum floor7.
7This property is actually necessary for a well defined problem. In the sequel, when the drawdown constraint (2) is

imposed, restrictions on the parameters of the model are made so that this “reflecting condition” is satisfied.
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2.2.1 Properties of the optimal allocations

The consumption-wealth ratio bc∗

W is given by

ĉ∗

W
=

1

A + L1(F ′(W ))
β′1
b

.

It is increasing in wealth and smaller than in the unconstrained case. The fraction of wealth invested

in the stock is given by

ẑ∗

W
=

µ− r

bσ2

1− β′1 +
β′1A

A + L1(F ′(W ))
β′1
b

 .

This ratio is monotonic (increasing) in wealth and smaller with respect to the unconstrained case.

The reason is the rise of the relative risk aversion of the lifetime utility in wealth since

−WF ′′

F ′
= b

1 +
β′1L1(F ′(W ))

β′1
b

A + (1− β′1)L1(F ′(W ))
β′1
b

 > b.

At the floor W = αM , this relative risk aversion is infinite and consequently holdings in stock are

zero. Note that the risky investment strategy is not of CPPI (that is, constant proportion portfolio

insurance) type as proposed by Black and Perold (1992) and optimally derived by Grossman and Zhou

(1993) for a stochastic floor. As wealth increases, lifetime utility relative risk aversion decreases and

as wealth becomes very large, the effects of the constraint vanish: optimal allocations converge to the

optimal unconstrained ones.

Our analysis so far has shown that in presence of a fixed minimum floor, hedging motives induce

a reduction in consumption and risky investment and enhance risk aversion. In the next section, we

will see that the ability of the individual to control the minimum floor combined with a ratchet effect

lead to quite different properties of stock holdings as well as for consumption plans as they serve as

wealth growth regulators.

2.3 Consumption-portfolio choice problem with a drawdown constraint

The agent aims at maximizing her lifetime utility

F (Wt,Mt) = max
(c,z)

Et

[∫ ∞

t

c1−b
s

1− b
e−θ(s−t)ds

]
,

subject to constraints (1) and (2), with Wt > 0, Mt > 0 given.
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Transversality Condition. The transversality condition for this problem is:

lim
T→∞

Et

[
F (Wt+T ,Mt+T )e−θ(t+T )

]
= 0.

As before, we assume that A and r are positive as well as a positive Sharpe ratio. Further assumptions

on the parameters are made in the sequel to ensure feasibility. We start the analysis by reviewing

some useful properties of the maximum process M and the value function F .

2.3.1 Properties of the maximum process

P1. As mentioned in Grossman and Zhou (1993), M is a continuous increasing process and thus a

finite variation process.

P2. Denoting by [X, Y ] the quadratic covariation between processes X and Y , we have d [M,W ]t = 0

and d [M,M ]t = 0.

2.3.2 Properties of the value function

P1. F is strictly increasing and concave in W and decreasing in M.

P2. F is homogenous of degree 1− b in (W,M).

Proof. See the Appendix.

Property P2 implies that

F (W,M) = M1−bf(u),

with u = W
M and some smooth function f . Note that from property P1 f is also concave and strictly

increasing in u.

2.3.3 Derivation of the value function.

Given the properties of the maximum process M , for W ∈ (αM,M), the HJB associated to the

investor’s program is

θF = max
(c,z)

c1−b

1− b
+ (rW − c + z(µ− r))F1 +

σ2

2
z2F11. (6)

The optimal conditions can be rewritten

c∗ = M(f ′(u))−
1
b

z∗

W
= −(µ− r)f ′(u)

σ2uf ′′(u)
,
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and for u ∈ (α, 1) the function f satisfies the non-linear ODE

θf(u) =
b(f ′(u))

b−1
b

1− b
+ ruf ′(u)− 1

2

(
µ− r

σ

)2 (f ′(u))2

f ′′(u)
. (7)

As shown in lemma 1, the general solution f of the ODE (7) is such that

u = A(f ′(u))−
1
b + K1(f ′(u))

β1−1
b + K2(f ′(u))

β2−1
b , (8)

where β1 and β2 are respectively the positive and negative roots of the quadratic

1
2

(
µ− r

bσ

)2

x2 +

(
1
A
− r − 1

2

(
µ− r

bσ

)2
)

x =
1
A

, (9)

and K1 and K2 are two constants to be determined. In the sequel, we find that K1 > 0 and K2 < 0.

Interpretation of the solution The optimal wealth process is the sum of three terms:

W = AM(f ′(u))−
1
b + K1M(f ′(u))

β1−1
b + K2M(f ′(u))

β2−1
b .

The first one is the usual consumption term as in Merton problem. The second term is positive and

incorporates hedging motives as in the fixed minimum floor problem. This term can be related to

portfolio insurance strategies involving simple options such as in Black and Perold (1992). Finally,

the third term is negative and regulates the growth rate of the wealth to mitigate the ratchet effect

of the stochastic floor.

The focus of the next paragraph is to establish the boundary conditions at u = α and u = 1.

2.3.4 Boundary conditions

The boundary conditions are derived in the Appendix. To sum up, at u = α, as in the minimum

floor problem, holdings in the risky asset must be zero. At u = 1, the condition must ensure that the

Hamilton Jacobi Bellman equation still holds. There are two possibilities depending on the parameters:

either F2(M,M) = 0 or holdings in the risky asset is set to zero. Denoting Y = (f ′(1))
1
b and

X = (f ′(α))
1
b , the boundary conditions are

αX = A + K1X
β1 + K2X

β2

A = (β1 − 1)K1X
β1 + (β2 − 1)K2X

β2

Y = A + K1Y
β1 + K2Y

β2

A− (β1 − 1)K1Y
β1 + (β2 − 1)K2Y

β2 = max
{

0,
1− b− β1β2

b− 1
(A0 − Y )

}
b 6= 1,
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where A−1
0 = θ+(b−1)r

b and when b = 1, Y = A = A0 = 1
θ . The following proposition specifies the

optimal holdings in stock when u = 1.

Proposition 1 Whenever b ≥ 1 (b ≤ 1), as long as Y ≤ A0 (Y ≥ A0), the optimal boundary

condition at W = M is F2(M,M) = 0 and stock holdings are positive, z∗1 > 0. Otherwise, setting the

risky portfolio allocation to zero, z∗1 = 0, is the optimal boundary condition at W = M .

Proof. See the Appendix.

As developed in more details in the sequel, the intuition behind the results of proposition 1. is

the agent’s willingness of mitigating the ratchet impact (and the irreversible associated cost) of the

drawdown constraint. The existence and uniqueness of the quadruple (K1,K2, X, Y ) with K1 > 0 and

K2 < 0 are shown in the Appendix.

2.3.5 Reflecting condition

As already mentioned in the section 2.2, when the drawdown constraint binds, the wealth dynamics

are deterministic

dWt = (r − 1
X

)Wtdt.

In order for the wealth process W to remain above the minimum floor αM in the next instant, we

must have r > 1
X .

Having solved the HJB equation and determined the boundary conditions at u = α and u = 1, we

now analyze the properties of the optimal allocations.

2.4 Properties of the optimal allocations

2.4.1 Consumption

Optimal consumption c∗ is implicitly defined by the relationship

W

M
= G

(
c∗

M

)
, (10)

where G(x) = Ax + K1x
1−β1 + K2x

1−β2 and since G′ > 0, it is increasing in current wealth W . The

consumption wealth ratio is given by

c∗

W
=

1
u

(
f ′(u)

)− 1
b ,

13



so
∂

∂u

(
c∗

W

)
=

1
bu2

(
f ′(u)

)− 1
b

(
−uf ′′(u)

f ′(u)
− b

)
> 0,

since due to hedging motives, we establish in the sequel that z∗

W < µ−r
bσ2 , which implies that the lifetime

utility relative risk aversion −uf ′′(u)
f ′(u) is above its unconstrained level b.

The consumption-wealth ratio c∗

W is increasing in the ratio current wealth over its peak, so in

particular increasing in current wealth and decreasing in the historical maximum level of wealth. At

the ceiling W = M, we have c∗

M = 1
Y , so in particular, for b > 1, Y > A (see the Appendix), we can

conclude that for all u in [α, 1], c∗

W < 1
A . Recall that the intertemporal elasticity of substitution (IES)

s is equal to 1
b . Hence if the investor is reluctant (s < 1) to alter her consumption plans overtime, she

chooses to consume a lower fraction of her wealth than she does in the unconstrained case. Conversely,

when b < 1, we have Y < A. Therefore, when the investor is willing to alter her consumption plans

(s > 1), for W
M large enough, the consumption-wealth ratio is larger than in the unconstrained case.

For α close to 1, this property is global8 in the sense that for all u in [α, 1], c∗

W > 1
A .

Next, we show that optimal consumption inherits a ratcheting behavior from wealth and habit

formation endogenously arises.

All-Time High Consumption and Habit Formation. Denoting c∗Mt
= sup

0≤s≤t
{c∗s} the maximum

to date level of consumption, for 0 ≤ s ≤ t, we have 1
X ≤ c∗s

Ms
≤ 1

Y . Since Ms ≤ Mt, it follows that for

all date t,
Y

X
≤ c∗t

c∗s
≤ c∗t

c∗Mt

.

The current consumption level c∗t over its peak c∗Mt
remains within the fixed band [αc, 1], with αc =

Y
X < 1. The maximum drawdown in consumption from its previous all-time high is 1 − αc and it

decreases as α goes up (see the Appendix). Imposing ratcheting on the wealth process induces a

ratcheting behavior of the optimal consumption as posited by Duesenberry (1949) and analytically

derived by Dybvig (1995). When the investor does not tolerate any decline in consumption, Dybvig

establishes that for all times t,
c∗Mt
r ≤ Wt ≤

−β2c∗Mt
r(1−β2) . This implies that current wealth Wt must be kept

above the proportion −β2

1−β2
of its peak Mt. Grossman and Zhou (1993) claim that the reason for such a

restriction on the manager’s investment policy is that the owner of the fund psychologically (and often

physically) commits to use part of the profit when reaching the peak. Dybvig argues that imposing a
8In the limit case α = 1, we show in the sequel that the consumption-wealth ratio is equal to 1

A0
and that X = Y = A0.

Since for b > 1, 1
A0

> 1
A

, by continuity, we deduce that for large values of the drawdown coefficient α, we have αX < A

and this implies c∗

W
> 1

A
, for all u in [α, 1].
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drawdown constraint on wealth seems ad hoc from an economic point of view, and his motivation was

to offer an alternative to the work by Grossman and Zhou (1993). Although the problem studied here

and Dybvig’s model are not equivalent, our analysis provides a bridge between the two approaches

as well as an economic justification in terms of preferences (habit formation) over consumption for

downside protection on wealth. The drawdown constraint (2) is a practical and effective way to ensure

that standard of living will not have to be lowered by too much in the case of an adverse shock.

We now investigate the impact of the magnitude of the drawdown proportion α on the consumption-

wealth ratio.

Proposition 2 If z∗1 = 0 is optimal, the more stringent the drawdown constraint (higher α), the

smaller the consumption-wealth ratio for all u in [α, 1]. When z∗1 > 0 is optimal, if b ≥ 1, the

previous result remains valid. However, if b < 1, there is a critical value u∗α in (α, 1), such that the

consumption-wealth ratio decreases in α on [α, u∗α] and increases on [u∗α, 1].

Proof. See the Appendix.

Proposition 2 suggests that for an investor with a high IES (s > 1), when wealth is about to reach

its peak, for large values of α, the investor relies on the consumption margin to regulate the growth

of her wealth and dampen the ratchet effect.
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Figure 1.1 : Consumption-wealth ratio c∗

W as a function of u

µ = 0.12, r = 0.04, σ = 0.2, θ = 0.06, b = 2.5

Figure 1.2 : Consumption-wealth ratio c∗

W as a function of u

µ = 0.12, r = 0.04, σ = 0.2, θ = 0.06, b = 0.8
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The consumption-wealth ratio c∗

W is displayed in Figures 1.1 and 1.2 for several values of the

drawdown constraint parameter α. For b > 1, as α goes up, c∗

W uniformly shrinks and remains below

the unconstrained ratio 1
A = 0.0672. The reduction in consumption is large when wealth is close the

minimum floor. For α = 0.6, 0.8, 0.9 and 0.95, the endogenous ratchet coefficient for consumption

αc is 0.29, 0.43, 0.53 and 0.61 respectively. For b < 1, curves cross with one another and as asserted

in proposition 2 when u is high enough, an increase in α leads to a higher consumption-wealth ratio

that significantly exceeds the unconstrained ratio 1
A = 0.04. When α = 0.6, 0.8, 0.9 and 0.95, the

values obtained for αc are 0.14, 0.22, 0.28 and 0.34 respectively. Observe that larger drawdowns 1−αc

from all-time high consumption level are allowed than in the case b > 1, reflecting the fact that the

individual’s IES is higher so she tolerates larger changes in her consumption plans across time.

We now examine the properties of the optimal portfolio strategy.

2.4.2 Assets allocations

The fraction of wealth invested in the risky asset is given by

z∗

W
=

µ− r

bσ2

(
1− β1K1(f ′(u))

β1
b + β2K2(f ′(u))

β2
b

A + K1(f ′(u))
β1
b + K2(f ′(u))

β2
b

)
.

The fraction of wealth invested in the risky asset is lower than in the unconstrained case, i.e. µ−r
bσ2 .

This is due in part to the hedging motives as described in the section 2.2. However, numerical

simulations (displayed in the sequel) indicate that the investor’s desire to dampen the ratchet effect

plays a significant role in explaining the reduction in risky investment.

Proposition 3 When F2(M,M) = 0 is optimal, if b > 1(b < 1) and θ < 1
Y (θ > 1

Y ), the fraction of

wealth invested in the risky asset is non-decreasing in the ratio W
M ; otherwise it is hump-shaped. When

z∗1 = 0 is optimal, the fraction of wealth invested in the stock and the ratio W
M are linked by an inverted

U -relationship.

Proof. See the Appendix.

Conditions for the logarithmic investor are more cumbersome and are presented in the Appendix.

Proposition 3 deserves several observations. First, choosing an increasing risky investment policy

is optimal when the cost associated with the ratchet effect is not too large. Observe that θ is the
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consumption-wealth ratio at u = 1 for the myopic investor (b = 1). When b > 1, the investor´s IES is

low (s < 1) and she is mainly concerned with the current consumption-wealth ratio and is reluctant

to defer consumption. Proposition 3 suggests that the agent optimally chooses an increasing risky

investment policy provided that at u = 1, c∗

M = 1
Y is above the corresponding value for the myopic

investor. Conversely, when b < 1, when eager to defer consumption and to accept a low level of

her current consumption-wealth ratio (below that of the myopic investor) at u = 1, the fraction of

wealth invested in stocks is increasing. Nevertheless, note that since for b > 1(b < 1), at u = 1, the

consumption-wealth ratio c∗

M = 1
Y goes down (up) when α increases forcing the investor to curb risky

investment as a percentage of wealth.

Second, decreasing stock holdings as a percentage of wealth when Wt is close to Mt depart from

the results obtained in Grossman and Zhou (1993) where the fraction of wealth invested in stock

always increases in the ratio W
M . Recall that in Grossman and Zhou (1993) there is no intermediate

consumption so intertemporal consumption substitution plays no role. Nevertheless, the hump-shaped

relationship corroborates the intuition pointed out by these authors, i.e. αM is expected to grow at a

faster rate than W and therefore investment in the risky asset is expected to fall. The lifetime utility

relative risk aversion is no longer decreasing as (current) wealth rises but instead is U -shaped.

The condition for the ratio z
W to be non-decreasing in W

M depends on all the parameters of the

model. A sufficient condition is θ < r(θ > r) whenever b > 1(b < 1), i.e. the investor must be patient

(impatient) enough when her relative risk aversion is high (low).

Proposition 4 The more stringent the drawdown constraint (higher α), the smaller the fraction of

wealth invested in the risky asset.

Proof. See the Appendix.

Proposition 4 formally states that an increase in α uniformly reduces z∗

W for all couples (W,M)

and suggests that indeed risky investment is the favored channel to achieve wealth growth regulation.
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Figure 2 : Fraction of wealth invested in stocks z∗

W as a function of u

µ = 0.12, r = 0.04, σ = 0.2, θ = 0.06, b = 2.5

Figure 2 depicts the fraction of wealth invested in the risky asset z∗

W for several values of the

drawdown constraint parameter α. As α goes up, risky investment is reduced and when α is large

enough, the curve z∗

W is hump shaped. As a benchmark, when α = 0, the unconstrained allocation the

fraction µ−r
bσ2 = 0.8. Indeed, observe that even when the current wealth Wt is far from the minimum

floor αMt, the reduction in stock holdings can be substantial.

Obviously, the analysis performed combined both hedging and ratchet effects. In order to dis-

entangle the two effects, consider a fixed minimum floor equal to αM and compute the fraction of

wealth invested in the stock bz∗

W when wealth W varies from αM up to M. Note that the ratio bz∗

W is
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independent of the choice of M .

Table I: Disentangling hedging and ratchet effects

α u 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.925 0.95 0.975 1

0.6 bz∗

W 0 0.283 0.383 0.450 0.499 0.537 0.568 0.581 0.592 0.603 0.613
z∗

W 0 0.279 0.375 0.436 0.478 0.506 0.526 0.532 0.537 0.540 0.541

0.8 bz∗

W - - - - 0 0.248 0.339 0.372 0.402 0.428 0.450
z∗

W - - - - 0 0.230 0.299 0.318 0.331 0.336 0.334

0.9 bz∗

W - - - - - - 0 0.168 0.234 0.283 0.322
z∗

W - - - - - - 0 0.143 0.184 0.199 0.190

Table I reports stock holdings bz∗

W and those corresponding to the drawdown problem z∗

W for several

values of α. Recall that for the Merton Problem, this ratio is constant and equal to 0.8. Observe that

hedging motives explain a significant share of the reduction in risky investment. Nevertheless, the

ratchet effect becomes significant when the ratio W
M approaches 1 and is enhanced as the drawdown

constraint becomes more stringent (higher α). Taking the unconstrained portfolio allocation as a

benchmark, at u = 1, the ratchet effect accounts for 9%, 14.5% and 16% for α = 0.6, 0.8 and 0.9

respectively of the total reduction in stock holdings.

2.4.3 Representation of the optimal wealth process

Optimal policies (c∗, z∗) has been expressed in terms of state variables (W,M) using dynamic program-

ming. Alternatively, it is possible to provide a representation in terms of simple regulated stochastic

processes and gain some insights about the dynamics across time. Details of the derivation are pre-

sented in the Appendix.

First of all, we establish that the process c∗

M is a two sided regulated geometric Brownian motion9

with lower barrier 1
X and upper barrier 1

Y and for u in (α, 1), the dynamics are given by

d

(
c∗t
Mt

)
=

c∗t
Mt

(
(r − 1

A
+

(µ− r)2

bσ2
)dt +

µ− r

bσ
dwt

)
.

9For the definition of a regulated Brownian motion, see Harisson (1985), p14.
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Observe that this law of motion is the same as the one that governs the optimal consumption process

in the Merton problem. Then, the representation of current wealth W , all time maximum wealth

M and consumption c∗ as stochastic processes depends on the boundary condition at u = 1. When

F2(M,M) = 0 is optimal, we show that the process log H
(

Wt
Mt

)
is a one sided regulated arithmetic

Brownian motion with lower barrier − log Y , and for u in (α, 1),

d log H

(
Wt

Mt

)
= (

r − θ

b
+

(µ− r)2

2bσ2
)dt +

µ− r

bσ
dwt.

If z∗1 = 0 is optimal, when wealth hits its peak for the first time τ0, we have

dWt = (r − 1
Y

)Wtdt.

There are two cases. If 1
Y < r, wealth will keep on increasing forever and for all t ≥ τ0, Wt ≡ Mt,

c∗t ≡ Mt
Y and zt ≡ 0. The ceiling W = M is an upper absorbing barrier. Recall that Y ≤

b
θ+(b−1)r

(
Y ≥ b

θ+(b−1)r

)
whenever b ≤ 1 (b ≥ 1). Thus, a sufficient condition to have an upper absorb-

ing barrier when b ≥ 1 is θ ≤ r, i.e. when the IES is small, the time discount rate needs to be smaller

than the riskfree rate. Conversely, if r ≤ 1
Y , wealth is driven down immediately after hitting its peak

and cannot exceed M0. The ceiling W = M is an upper reflecting barrier. A sufficient condition to

have an upper reflecting barrier when b ≤ 1 is θ ≥ r, i.e. when the IES is large, the time discount rate

needs to be larger than the riskfree rate.

In the next section, we estimate the cost induced by the constraint.

3 COST OF THE DRAWDOWN CONSTRAINT

There are several ways of estimating the cost of the drawdown constraint. We can assess the loss in

terms of forgone lifetime utility; alternatively, we can measure it in terms of the numéraire. We start

with the first measure and to keep things simple, we derive the maximum cost when α = 1.

3.1 Cost in terms of forgone lifetime utility

Wealth must always be maintained at its maximum, so in order not to violate the drawdown constraint,

holdings in the stock must be zero z∗ ≡ 0. This is equivalent to solving the deterministic optimal

consumption-portfolio problem when only a bond is available. The optimal level of consumption is

proportional to wealth with c = W
A0

and the evolution of wealth is deterministic

dWt =
r − θ

b
Wtdt.
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The problem is well defined if and only if r ≥ θ and the corresponding value function is Ab
0W 1−b

1−b .

The (maximum) cost of the drawdown constraint in terms of loss of the lifetime utility is the relative

difference between the constrained and unconstrained value functions. For b 6= 1, it is simply given by(
A0

A

)εb

− 1,

where ε = 1(ε = −1) if b > 1(b < 1). For µ = 0.12, r = 0.06, σ = 0.2, θ = 0.05, b = 2.5, the loss

is approximately 55.4%. It decreases with the instantaneous variance σ2 but increases with the mean

return µ.

3.2 Cost in terms of the numéraire

We calculate the percentage k increase in wealth necessary to bring the level of the lifetime utility to

the level of those of an unconstrained investor, i.e. we want to determine k such that F ((1 + k)W ) =
Ab

1−bW
1−b. We obtain

k =
(

A0

A

) b
1−b

− 1,

and for the parameters chosen previously, we find that the percentage increase k is approximately

34.2%. It also decreases with the instantaneous variance σ2 and increases with the mean return µ.

For both measures, the cost induced by the constraint is economically significant.

4 EXTENSION OF THE BASIC MODEL

In this section, we consider the case of an agent who derives utility from current consumption and

also from her status. Broadly speaking, there are two rival theories of social status: ascription versus

achievement. Individual position can be ascribed by virtue of their age, sex, race, and family member-

ship or connection. Alternatively, individuals can achieve their own position by their own performance

and merits. Here, we interpret a society in which higher wealth confers a higher status. Status can

confer power, privileges, access to political circles or social events, and at a more personal level, en-

hance self esteem. As argued in Cole, Mailath, and Postlewaite (1992), social status can determine

the degree of success one group member may have with non-market decisions such as finding a good

mate for instance. Weber (1968) refers to a status group as a collection of individuals who happen

to have a common lifestyle and share the same economic interest. Maintaining one’s membership of

a status group is certainly desirable and ambition may dictate social climbing; however, individuals
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may be reluctant to lower their position in society. People who experience a downward social shift

may experience depression or poor psychological well being.10

Following Bakshi and Chen (1996) and Smith (2001), to keep things simple, we retain current

wealth level W as an index of status and status seeking is modeled as direct preference for financial

wealth. More specifically, preferences11 are given by

u(c,W,M) =


(c+aW )1−b

1−b , W ≥ αM

−∞, otherwise,

where parameter a > 0 governs how much the agent cares about her social status.

We first examine the optimal consumption-portfolio choices for an unconstrained investor.

4.1 Benchmark Case

In the absence of status downfall fear, the agent aims at maximizing her lifetime utility

F (Wt) = max
(c,z)

Et

[∫ ∞

t

(cs + aWs)1−b

1− b
e−θ(s−t)ds

]
,

subject to the budget constraint (1) with Wt > 0 given. The transversality condition for this problem

is the same as in the Merton problem. The Hamilton Jacobi Bellman (HJB) equation of this problem

is

θF = max
(c,z)

(c + aW )1−b

1− b
+ (rW − c + z(µ− r))F ′ +

σ2

2
z2F ′′.

The optimal conditions are

c∗ = (F ′)−
1
b − aW and z∗ = −(µ− r)F ′

σ2F ′′
,

and F satisfies the following non-linear ODE

θF =
b(F ′)

b−1
b

1− b
+ (r + a)WF ′ − 1

2

(
µ− r

σ

)2 (F ′)2

F ′′
. (11)

10The University of Newcastle upon Tyne study by Parker, Pearce and Tiffin (2005) indicates that women are twice

as likely to be downwardly mobile. The study involved men and women born in 1947 in Newcastle and followed them

from childhood to age 50. Researchers noted the findings might be explained by the fact that men born during that

era gained much of their self-esteem from their careers, whereas women found fulfillment from social pursuits outside of

work, such as children and friendships. It’s also possible that women are more emotionally resilient in such situations,

the researchers suggested.
11The choice of the functional form of the utility function is motivated by tractability reasons.
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Inspection of the ODE (11) reveals that the problem can be nested in a standard Merton problem

as in section 2.1 with a riskfree rate r + a and a mean return of the stock µ + a. It follows that the

optimal allocations are given by

c∗

W
=

1

Ã
− a

z∗

W
=

µ− r

bσ2
,

with

(Ã)−1 =
θ

b
+

b− 1
b

(
r + a +

(µ− r)2

2bσ2

)
> 0.

For our choice of the functional form of the utility function, the lifetime utility relative risk aversion is

constant and equal to b so the risky portfolio strategy is unchanged by the spirit of capitalism. Status

seeking only affects the optimal consumption plans. Recall that the agent derives utility through two

channels: current consumption c and current wealth W . These two channels compete with each other:

the higher the consumption, the lower wealth accumulation and therefore the lower the future status.

An increase in status enjoyment (higher a) leads to a decrease in the consumption-wealth ratio: the

agent chooses to foster wealth accumulation, which is reflected by a higher mean growth of the wealth

process.

We now study the case when the agent is reluctant to accept large status downfalls. In particular,

we will see that status has a significant impact on stock holdings.

4.2 Maintaining Social Status

Given the homogeneity of degree 1−b in (c,W ) of the utility function, the linearity in variables (W,M)

of the drawdown constraint (2) and the form of the “reduced” HJB (11), it is easy to realize that the

analysis performed for the case a = 0 still applies if we substitute 1
A with 1

eA
and replace (µ, r) with

(µ + a, r + a) in the definition of roots β1 and β2.

We now investigate the quantitative impact of status on the optimal allocations.
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Figure 3 : Fraction of wealth invested in stocks z∗

W as a function of u

µ = 0.12, r = 0.04, σ = 0.2, θ = 0.06, b = 2.5, α = 0.8
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Figure 4 : Consumption-wealth ratio c∗

W as a function of u

µ = 0.12, r = 0.04, σ = 0.2, θ = 0.06, b = 2.5, α = 0.8
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Figures 3 and 4 represent the fraction of wealth invested in the risky asset z∗

W and the consumption-

wealth ratio c∗

W for several values12 of the parameter a. As a goes up, the investor increasingly values

social status, which leads to heavier stock holdings in an attempt to achieve a higher growth rate of

her wealth (Figure 3). In parallel, observe in Figure 4 that the consumption-wealth ratio uniformly

shrinks. Priority shifts towards building up status that has a persistent impact whereas consumption

is less appealing since its effect is only instantaneous. When a ratcheting behavior is imposed on

wealth, introducing wealth as a proxy for social status in the utility function fosters risky investment

in a substantial manner.

5 CONCLUSION

We have examined the implications of the intolerance of a large decline in wealth on optimal consump-

tion and portfolio policies for an investor with constant relative risk aversion preferences. We find that

wealth ratcheting induces a ratcheting behavior of consumption as current optimal consumption is al-

ways maintained above a fixed percentage of its all-time maximum. Hedging motives and mitigating

the cost associated with the ratchet feature of the constraint govern the agent’s intertemporal choices.

We have isolated the impact of hedging by analyzing asset management for a foundation required

to preserve its endowment. Essentially, the lifetime utility relative risk aversion rises, which leads to

smaller stock holdings. Looking at the wedge between optimal allocations for the fixed floor and a

ratchet floor allows us to quantify the ratchet impact and uncover its significance. In particular, the

investor may curb investment in stocks as wealth approaches its peak to limit its growth and the risk

of raising the minimum floor. An extension of the basic model incorporates the spirit of capitalism and

interprets wealth as an index for social status. Lasting benefits from current and future status levels

provide incentives for a higher growth of the wealth and induce a more aggressive risky investment

strategy at the expense of consumption.

Another possible extension would be to include labor income. If the correlation between labor

income and the stock market is small or negative, the investor naturally would like to borrow against

her future income to increase risky investment, which could drive down her financial wealth and

exacerbate both hedging motives and the ratchet effect. A detailed analysis is left for future research.

12For higher values of a, the reflecting condition at the minimum floor αM is violated.
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6 APPENDIX

A.1. Proof of Lemma 1

Consider the duality approach and the following changes of variables: X = F ′(W ),W = −J ′(X) and

F (W ) = J(X)−XJ ′(X). Using relationship (7), we find that the function J must be solution of the

following linear ODE

θ′J(X) =
bX

b−1
b

1− b
+ (θ′ − r′)XJ ′(X) +

1
2

(
µ′ − r′

σ

)2

X2J ′′(X).

The general solution is

J(X) =
bAX

b−1
b

1− b
+

bL1

β′1 − 1− b
X

β′1−1−b

b +
bL2

β′2 − 1− b
X

β′2−1−b

b , (12)

where L1 and L2 are constants. Differentiating (12) with respect to X and using the fact that

X = F ′(W ) and W = −J ′(X) provides the desired result.

A.2. Proof of Properties β′1 > 1 and 1− b− β′2 > 0.

Recall that β′1 is the positive root of the quadratic

Q(x) =
1
2

(
µ′ − r′

bσ

)2

x2 +

(
1
A
− r′ − 1

2

(
µ′ − r′

bσ

)2
)

x− 1
A

.

Since Q(1) = −r′ < 0, we must have β′1 > 1. Then, using the fact that

1
2

(
µ′ − r′

bσ

)2

Aβ′2β
′
1 = 1 and

1
2

(
µ′ − r′

bσ

)2

(β′1 + β′2) = − 1
A

+ r′ +
1
2

(
µ′ − r′

bσ

)2

,

we find that

(β′1 + b− 1)(1− b− β′2) =
θ′

1
2

(
µ′−r′

bσ

)2 .

Since β′1 > 1, indeed we have 1− b− β′2 > 0.

A.3. Proof of Properties P1 and P2

P1. F is strictly increasing in W and decreasing in M since given W , the higher M , the more

stringent the drawdown constraint. Let λ ∈ (0, 1), (W0,M0) and (W ′
0,M0) be two initial states and

(c, (x, z)) and (c′, (x′, z′)) the associated optimal strategies. Then, for initial wealth λW0 +(1−λ)W ′
0,

(λc + (1 − λ)c′, λx + (1 − λ)x′, λz + (1 − λ)z′) is also a feasible strategy as the wealth dynamics are

linear in variables (c, x, z) and

λWt + (1− λ)W ′
t ≥ λαMt + (1− λ)αMt

≥ α max{M0, λWs + (1− λ)W ′
s, s ≤ t}.
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Finally, by strict concavity of the utility function u

E0

[∫ ∞

0
u(λcs + (1− λ)c′s)e

−θsds

]
> E0

[∫ ∞

0

(
λu(cs) + (1− λ)u(c′s

))
e−θsds,

which implies that F (λW0 + (1− λ)W ′
0,M0) > λF (W0,M0) + (1− λ)F (W ′

0,M0).

P2. Let (c, (x, z)) be feasible for an initial state (W0,M0) and λ ∈ (0, 1). Then (λc, (λx, λz)) is

feasible for the initial state (λW0, λM0) since the dynamics of the corresponding wealth process Wλ

are

dWλ(s) = (λrxs − λcs + λzsµ)ds + λzsσdws

= λdWs,

so Wλ(s) = λWs and therefore Wλ(s) = λWs ≥ αλMs = αMλ(s). It follows that F (λW, λM) ≤

λ1−bF (W,M) by homogeneity of degree 1− b the utility function. Finally

F (W,M) = F (λ−1λW, λ−1λM) ≤ λb−1F (λW, λM),

so in fact we have F (λW, λM) = λ1−bF (W,M).

A.4. Derivation of Boundary Conditions

Condition for a well defined value function. The boundary conditions must be such that f is

well defined and the drawdown constraint is met. Taking derivatives with respect to u relationship

(8), it is easy to see that for all u in (α, 1)

−bf ′(u)
f ′′(u)

= A(f ′(u))−
1
b − (β1 − 1)K1(f ′(u))

β1−1
b − (β2 − 1)K2(f ′(u))

β2−1
b . (13)

Since − bf ′(u)
f ′′(u) is non-positive, for all u in [α, 1], we must have

(β1 − 1)K1(f ′(u))
β1
b + (β2 − 1)K2(f ′(u))

β2
b ≤ A. (14)

Then, set Y = (f ′(1))
1
b and X = (f ′(α))

1
b and notice that Y ≤ X. Given relationship (8), it must be

the case that the function

[Y, X] → R

Φ : y 7→ Ay−1 + K1y
β1−1 + K2y

β2−1,

is invertible so we can write f ′(u) =
(
Φ−1(u)

)b
, for all u in [α, 1] . Since f ′′ is negative, then Φ′ must

be negative. Condition (14) is equivalent to

Ψ(y) = −A + (β1 − 1)K1y
β1 + (β2 − 1)K2y

β2 < 0.

28



As shown in the sequel, we must have Ψ(X) = 0. For K1 > 0 and K2 < 0 (to be justified later), it

turns out that

Ψ′(y) = β1(β1 − 1)K1y
β1−1 + β2(β2 − 1)K2y

β2−1,

is strictly increasing and has at most one root on [Y, X]. Hence, the condition Ψ(Y ) ≤ 0 is necessary

and sufficient to guarantee that Ψ is negative on (X, Y ).

Boundary condition at u = 1. First of all, we have

1 = A(f ′(1))−
1
b + K1(f ′(1))

β1−1
b + K2(f ′(1))

β2−1
b . (15)

Then, for h > 0, over the interval of time [t, t + h] , the HJB is

F (Wt,Mt) = max
(c,z)

Et

[
c1−b
t

1− b
+ e−θhF (Wt+h,Mt+h)

]
,

so using Ito lemma for semi-martingales

0 = max
(c,z)

c1−b
t
1−b + Et

[∫ t+h
t

(
−θF + (rW − c + z(µ− r))F1 + σ2

2 z2F11

)
ds
]

+Et

[∫ t+h
t F2dM

]
.

As derived in Grossman and Zhou (1993)

Et [Mt+h −Mt | Wt = Mt] =

√
2
π

σ |z|
√

h + O(h).

When h is small,
√

h dominates h so in order for the Bellman equation to hold at W = M, we must

have

F2(M,M) = 0 or z∗1 = 0,

F2(M,M) = 0 or z∗1 = 0,and the HJB (7) is also valid for u = 1. Since the definition of the HJB

involves a maximization over z, whenever feasible, it is optimal to choose z∗1 = − (µ−r)f ′(1)
σ2f ′′(1) , instead of

z∗1 = 0.

Case 1: z∗1 > 0 is optimal. We must have F2(M,M) = 0 or equivalently f ′(1) = (1−b)f(1). Using

relationship (7) leads to

θ

1− b
=

(
b

1− b
+ (r +

1
2b

(
µ− r

σ

)2

)A

)
(f ′(1))−

1
b +

(
r − β1 − 1

2b

(
µ− r

σ

)2
)

K1(f ′(1))
β1−1

b

+

(
r − β2 − 1

2b

(
µ− r

σ

)2
)

K2(f ′(1))
β2−1

b .
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Using the definition of A, relationship (15) and the fact that β1 and β2 are the roots of the quadratic

(9), it follows that

−A(f ′(1))−
1
b − 1

A
=

b− 1
2

(
µ− r

bσ

)2 (
β1K1(f ′(1))

β1−1
b + β2K2(f ′(1))

β2−1
b

)
,

and finally since β1β2 = − 1
A
2 (µ−r

bσ )2 , we find that

−β1β2

(
A(f ′(1))−

1
b − 1

)
= (1− b)

(
β1K1(f ′(1))

β1−1
b + β2K2(f ′(1))

β2−1
b

)
.

Case 2: z∗1 = 0 is optimal. From the HJB equation, we have

θf(1) =
b(f ′(1))

b−1
b

1− b
+ rf ′(1).

Boundary condition at u = α. At W = αM, risky investment must be zero in order not to violate

the constraint in the near future with some positive probability. From relationship (13), we find that

z∗

W
=

µ− r

bσ2

(
1− β1K1(f ′(u))

β1−1
b + β2K2(f ′(u))

β2−1
b

A(f ′(u))−
1
b + K1(f ′(u))

β1−1
b + K2(f ′(u))

β2−1
b

)
.

At u = α, we have

α = A(f ′(α))−
1
b + K1(f ′(α))

β1−1
b + K2(f ′(α))

β2−1
b ,

and z∗α = 0 implies

A = (β1 − 1)K1(f ′(α))
β1
b + (β2 − 1)K2(f ′(α))

β2
b .

To summarize, the boundary conditions are:

αX = A + K1X
β1 + K2X

β2

A = (β1 − 1)K1X
β1 + (β2 − 1)K2X

β2

Y = A + K1Y
β1 + K2Y

β2 β1β2 (Y −A) = (1− b)
(
β1K1Y

β1 + β2K2Y
β2
)

if z∗1 > 0

A = (β1 − 1)K1Y
β1 + (β2 − 1)K2Y

β2 if z∗1 = 0.

Using the fact that A0 = − β1β2A
1−b−β1β2

, the system can be rewritten as stipulated in the core of the

paper.

A.5. Proof of Proposition 1

We examine the condition Ψ(Y ) ≤ 0 derived in A.4. When F2(M,M) = 0 we must have

(β1 − 1)K1Y
β1 + (β2 − 1)K2Y

β2 ≤ A.
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Since in this case

A− (β1 − 1)K1Y
β1 + (β2 − 1)K2Y

β2 =
1− b− β1β2

b− 1
(A0 − Y ),

it follows that Y ≤ A0 (Y ≥ A0) if b ≥ 1(b ≤ 1). When z∗1 = 0 is optimal, note that A0 ≥ A(A0 ≤ A)

whenever b ≥ 1(b ≤ 1), so in this case, we have Y ≥ A(Y ≤ A) whenever b ≥ 1(b ≤ 1).

A.6.1. Proof of Existence and Uniqueness of (X, Y,K1,K2) when z∗1 > 0

We want to show existence and uniqueness for the following 4 by 4 non-linear system:

αX = A + K1X
β1 + K2X

β2 (16)

A = (β1 − 1)K1X
β1 + (β2 − 1)K2X

β2 (17)

Y = A + K1Y
β1 + K2Y

β2 (18)

β1β2 (Y −A) = (1− b)
(
β1K1Y

β1 + β2K2Y
β2

)
. (19)

Combining relationships (18) and (19) leads to

β1(1− b− β2)K1Y
β1 + β2(1− b− β1)K2Y

β2 = 0.

Since both β1(1 − b − β2) and β2(1 − b − β1) are positive, it must be the case that K1 and K2 have

opposite signs. Then

K1Y
β1 =

β2(1− b− β1)
β1 − β2

Y −A

b− 1
,

which implies that K1 has the same sign as Y−A
b−1 . Eliminating K1 and K2 from relationship (17) yields

A =

(
β2(β1 − 1)(1− b− β1)

(
X

Y

)β1

− β1(β2 − 1)(1− b− β2)
(

X

Y

)β2
)

Y −A

(b− 1)(β1 − β2)
.

Since both β2(β1− 1)(1− b−β1) and −β1(β2− 1)(1− b−β2) are positive, we find that Y−A
b−1 is indeed

positive. Hence K1 > 0 and K2 < 0 and Y ≥ A (Y ≤ A) exactly when b ≥ 1 (b ≤ 1). Combining (16)

and (17) leads

αX = β1K1X
β1 + β2K2X

β2 ,

and eliminating K1 and K2 using relationships (18) and (19) yields

αX = β1β2

(
(1− b− β1)

(
X

Y

)β1

− (1− b− β2)
(

X

Y

)β2
)

Y −A

(b− 1)(β1 − β2)
.

Set $ = X
Y ≥ 1, we have

X =
β1β2A

(
(1− b− β1)$β1 − (1− b− β2)$β2

)
α (β2(β1 − 1)(1− b− β1)$β1 − β1(β2 − 1)(1− b− β2)$β2)

,
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and $ is implicitly defined by

α(b− 1)(β1 − β2) = −α
(
β2(β1 − 1)(1− b− β1)$β1 − β1(β2 − 1)(1− b− β2)$β2

)
+β1β2

(
(1− b− β1)$β1−1 − (1− b− β2)$β2−1

)
.

Define the auxiliary function

[1,∞) → R

Φ : x 7→
α
(
β2(β1 − 1)(1− b− β1)xβ1 − β1(β2 − 1)(1− b− β2)xβ2

)
−β1β2

(
(1− b− β1)xβ1−1 − (1− b− β2)xβ2−1

)
− α(1− b)(β1 − β2).

We want to show that Φ has a unique root $ > 1. Φ is continuously differentiable and Φ(1) =

(1− α)β1β2(β1 − β2) < 0. Then, we show that Φ( 1
α) < 0. A little bit of algebra yields

Φ(
1
α

) = −β2(1− b− β1)
(

1
α

)β1−1

+ β1(1− b− β2)
(

1
α

)β2−1

− α(1− b)(β1 − β2).

Define an auxiliary function

(1,∞) → R

Θ : y 7→ −β2(1− b− β1)yβ1 + β1(1− b− β2)yβ2 .

Again Θ is continuous and differentiable and lim
1

Θ = (1− b)(β1−β2). Clearly, Θ is decreasing, which

implies that for all y in (1,∞), Θ(y) < (1− b)(β1 − β2) and in particular Φ( 1
α) < 0. Then

Φ′(x) = −β1β2x
β2−2(αx− 1)Ψ(x),

where Ψ(x) = −(β1 − 1)(1− b− β1)xβ1−β2 + (β2 − 1)(1− b− β2). Since −(β1 − 1)(1− b− β1) > 0 and

β1 − β2 > 0, g is strictly increasing and

Ψ(1) = −(β1 − 1)(1− b− β1) + (β2 − 1)(1− b− β2).

Case 1: Ψ(1) > 0. In this case, Ψ is strictly positive and therefore Φ is decreasing on
[
1, 1

α

]
and

increasing on [ 1
α ,∞). Since Φ is continuous and lim

∞
Φ = ∞ we conclude that Φ has a unique root $

∈ [ 1
α ,∞).

Case 2: Ψ(1) < 0. Then define x∗ such that Ψ(x∗) = 0, i.e.

x∗ =
(

(β2 − 1)(1− b− β2)
(β1 − 1)(1− b− β1)

) 1
β1−β2

.
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It follows that Ψ is negative on [1, x∗] and positive on [x∗,∞). Then we need to distinguish whether

x∗ is smaller or greater than 1
α .

Case 2.1: 1
α < x∗. In this case, Φ is increasing on

[
1, 1

α

]
, decreasing on

[
1
α , x∗

]
and finally increasing

on [x∗,∞). Since Φ( 1
α) < 0, we conclude that Φ has a unique root that belongs to [x∗,∞).

Case 2.2: x∗ < 1
α . In this case, Φ is increasing on [1, x∗], then decreasing on

[
x∗, 1

α

]
and finally

increasing on [ 1
α ,∞). It remains to show that Φ(x∗) < 0 to conclude that Φ has a unique root that

belongs to the interval [ 1
α ,∞). Using the definition of x∗, one can show that

Φ(x∗) = (β1 − β2)(β1 + b− 1)
(

α(β1 − 1)(x∗)β1 − β1β2

β2 − 1
(x∗)β1−1

)
− α(1− b)(β1 − β2).

Define an auxiliary function

(1,∞) → R

Ξ : y 7→ α(β1 − 1)yβ1 − β1β2

β2−1yβ1−1,

Again Ξ is continuous and differentiable and

Ξ′(y) = β1(β1 − 1)yβ1−2(αy − β2

β2 − 1
).

It follows that Ξ′ is negative on
[
1, β2

α(β2−1)

]
and then increasing on

[
β2

α(β2−1) ,
1
α

]
. Consequently, since

(β1−β2)(β1+b−1) > 0, it must be the case that Φ(x∗) ≤ max {Φ(1),Φ( 1
α)}, so in particular Φ(x∗) < 0

and the desired result follows.

To summarize, there is a unique real number $ > 1
α such that Φ($) = 0. In addition, we have

Φ′($) > 0. From the definition of $, we have

1
α

Φ′($)
∂$

∂α
= −β1β2$

β2−1

α2

(
(1− b− β1)$β1−β2 − (1− b− β2)

)
.

Since $ > 1, we have (1− b−β1)$β1−β2− (1− b−β2) < −(β1−β2) < 0. Hence ∂$
∂α < 0. The existence

and uniqueness of X, Y,K1 and K2 follow. When b = 1, Y = A and $ is defined by

$β1(β1 − α(β1 − 1)$) = $β2(β2 − α(β2 − 1)$). (20)

A.6.2. Proof of Existence and Uniqueness of (X, Y,K1,K2) when z∗1 = 0

We want to show existence and uniqueness for the following 4 by 4 non-linear system:

αX = A + K1X
β1 + K2X

β2 (21)

A = (β1 − 1)K1X
β1 + (β2 − 1)K2X

β2 (22)

Y = A + K1Y
β1 + K2Y

β2 (23)

A = (β1 − 1)K1Y
β1 + (β2 − 1)K2Y

β2 . (24)
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First of all, notice that K1 and K2 must have opposite sign otherwise the function

Φ : y 7→ (β1 − 1)K1y
β1 + (β2 − 1)K2y

β2 ,

is monotonic and therefore the equation Φ(y) = A cannot have two distinct roots. Then we have

αX = β1K1X
β1 + β2K2X

β2 ,

and since X > 0, β1 > 0 and β2 < 0, it must be the case that K1 > 0 and K2 < 0. Then combining

relationships (23) and (24) yields

(β1 − β2)K1Y
β1 = β2A− (β2 − 1)Y

−(β1 − β2)K2Y
β2 = β1A− (β1 − 1)Y.

Once again, define $ = X
Y ≥ 1, and we have

(β1 − 1)(β2A− (β2 − 1)Y )$β1 − (β2 − 1)(β1A− (β1 − 1)Y )$β2 = (β1 − β2)A

(β2A− (β2 − 1)Y )$β1 − (β1A− (β1 − 1)Y )$β2 = (β1 − β2)(αX −A).

Eliminating Y leads to

X =
A
(
(β1 − β2)$β1+β2 + β1(β2 − 1)$β1 − β2(β1 − 1)$β2

)
α(β1 − 1)(β2 − 1)($β1 −$β2)

,

and it follows that $ is implicitly defined by

−αβ2(β1 − 1)$β1 + β1(β2 − 1)$β1−1 + (β1 − β2)$β1+β2−1

= −β2(β1 − 1)$β2−1 + αβ1(β2 − 1)$β2 + α(β1 − β2) = 0.

Define
[1,∞) → R

Φ : y 7→
−αβ2(β1 − 1)yβ1 + β1(β2 − 1)yβ1−1 + (β1 − β2)yβ1+β2−1

−β2(β1 − 1)yβ2−1 + αβ1(β2 − 1)yβ2 + α(β1 − β2).

We want to show that there is a unique $ such that Φ($) = 0. Φ is continuously differentiable and

Φ(1) = 0. Then

Φ′(y) = −αβ1β2(β1 − 1)yβ1−1 + β1(β2 − 1)(β1 − 1)yβ1−2 + (β1 − β2)β1 + β2 − 1)yβ1+β2−2

−β2(β1 − 1)(β2 − 1)yβ2−2 + αβ1β2(β2 − 1)yβ2−1.
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Φ′(1) = −β1β2(β1 − β2)(α− 1) < 0. In addition, Φ′(y) has the same sign as

−αβ1β2(β1 − 1)y1−β2 + β1(β2 − 1)(β1 − 1)y−β2 + (β1 − β2)β1 + β2 − 1)

−β2(β1 − 1)(β2 − 1)y−β1 + αβ1β2(β2 − 1)y1−β1 .

Then define

[1,∞) → R

Θ : y 7→
−αβ1β2(β1 − 1)y1−β2 + β1(β2 − 1)(β1 − 1)y−β2 + (β1 − β2)β1 + β2 − 1)

−β2(β1 − 1)(β2 − 1)y−β1 + αβ1β2(β2 − 1)y1−β1 .

We know that Θ(1) = −β1β2(β1 − β2)(α− 1) < 0 and

Θ′(x) = αβ1β2(β1 − 1)(β2 − 1) (αy − 1) y−β1−1(yβ1−β2 − 1) ≥ 0.

Hence, Θ is strictly decreasing on [1, 1
α ] and strictly increasing on [ 1

α ,∞). Since lim
∞

Θ = ∞, we

conclude that Θ has a unique root y∗ in ( 1
α ,∞). Thus, Φ is decreasing on [1, y∗] and increasing on

[y∗,∞) with lim
∞

Φ = ∞. This shows that Φ has a unique root $ > 1
α and Φ′($) > 0. From the

definition of $, we have

Φ′($)
∂$

∂α
= β2(β1 − 1)$β1 − β1(β2 − 1)$β2 − (β1 − β2).

Since x 7→ β2(β1 − 1)xβ1 − β1(β2 − 1)xβ2 − (β1 − β2) is decreasing and since $ > 1, we have β2(β1 −

1)$β1 − β1(β2 − 1)$β2 − (β1 − β2) < 0. Hence ∂$
∂α < 0. The existence and uniqueness of X, Y,K1 and

K2 follow.

A.7 Proof of Proposition 2

Case 1: z∗1 > 0 is optimal. When α increases f(1) must decrease. Since f ′(1) = (1 − b)f(1), we

deduce that when b < 1(b > 1), ∂Y
∂α < 0 (∂Y

∂α > 0). Hence 1
Y−A

∂Y
∂α > 0, b 6= 1. When b = 1, then

Y = A, so ∂Y
∂α = 0. Then

∂K1

∂α
Y β1+1 = (−β1K1Y

β1 +
β2(1− b− β1)Y
(β1 − β2)(b− 1)

)
∂Y

∂α

=
K1Y

β1

Y −A

∂Y

∂α
(β1A + (1− β1)Y ).

Recall that

(β2 − β1)K2X
β2 = −(β1 − 1)αX + β1A > 0,
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so αX < β1A
β1−1 and since Y < αX, it follows that Y < β1A

β1−1 . Therefore ∂K1
∂α > 0. From

u = A
(
f ′(u)

)− 1
b + K1

(
f ′(u)

)β1−1
b + K2

(
f ′(u)

)β2−1
b ,

it follows that

(
f ′(u)

)−1
(

A

b

(
f ′(u)

)− 1
b − β1 − 1

b
K1

(
f ′(u)

)β1−1
b − β2 − 1

b
K2

(
f ′(u)

)β2−1
b

)
∂f ′(u)

∂α

=
∂K1

∂α

(
f ′(u)

)β1−1
b +

∂K2

∂α

(
f ′(u)

)β2−1
b .

The sign of the LHS is the same as ∂K1
∂α (f ′(u))

β1−β2
b + ∂K2

∂α and u 7→ ∂K1
∂α (f ′(u))

β1−β2
b + ∂K2

∂α achieves

its minimum at 1 and its maximum at u = α. Then

∂K1

∂α
Y β1−β2 +

∂K2

∂α
= Y −(1+β2) ∂Y

∂α
(A− (β1 − 1)K1Y

β1 − (β2 − 1)K2Y
β2).

Since A − (β1 − 1)K1Y
β1 − (β2 − 1)K2Y

β2 > 0, when b > 1, ∂Y
∂α > 0, so ∂K1

∂α Y β1−β2 + ∂K2
∂α > 0. In

addition, when b = 1, ∂K1
∂α Y β1−β2 + ∂K2

∂α = 0. Hence, when b ≥ 1, ∂f ′(u)
∂α > 0. As c∗ = M (f ′(u))−

1
b , if

b ≥ 1, ∂c∗

∂α < 0. Conversely, when b < 1, we have ∂K1
∂α Y β1−β2 + ∂K2

∂α < 0. Then

∂K1

∂α
Xβ1−β2 +

∂K2

∂α
=

X−β2

(Y −A)Y
∂Y

∂α

(
K1X

β1(Y (1− β1) + β1A) + K2X
β2(Y (1− β2) + β2A)

)
=

X−β2

(Y −A)Y
∂Y

∂α
A(αX − Y ) > 0.

Hence, there exists u∗α in (α, 1), so that ∂f ′(u)
∂α > 0 on [α, u∗α) and ∂f ′(u)

∂α < 0 on (u∗α, 1]. We conclude

that ∂c∗

∂α < 0 on [α, u∗α) and ∂c∗

∂α > 0 on (u∗α, 1].

Case 2: z∗1 = 0 is optimal. In this case, we have

Y
∂Y

∂α
= (β1K1Y

β1 + β2K2Y
β2)

∂Y

∂α
+

∂K1

∂α
Y β1+1 +

∂K2

∂α
Y β2+1.

Recall that Y = β1K1Y
β1 + β2K2Y

β2 , so

∂K1

∂α
Y β1 +

∂K2

∂α
Y β2 = 0,

and therefore, ∂K1
∂α and ∂K2

∂α must have opposite signs. Similarly

X + α
∂X

∂α
=

∂K1

∂α
Xβ1 +

∂K2

∂α
Xβ2 +

1
X

(β1K1X
β1 + β2K2X

β2)
∂X

∂α
.

Since αX = β1K1X
β1 + β2K2X

β2 , we find that

∂K1

∂α
Xβ1 +

∂K2

∂α
Xβ2 = X > 0.
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As in case 1, to determine the sign of ∂f ′(u)
∂α , we need to investigate the sign of ∂K1

∂α (f ′(u))
β1−β2

b + ∂K2
∂α .

Set y = (f ′(u))
1
b and define

[Y, X] → R

Φ : y 7→ ∂K1
∂α yβ1−β2 + ∂K2

∂α ,

Φ is a continuous and differentiable function with Φ(Y ) = 0. Then, F is monotonic and Φ(X) > 0.

Hence, it must be the case that ∂K1
∂α > 0 and ∂K2

∂α < 0 and Φ is positive on [Y, X]. We conclude that
∂c∗

∂α < 0.

A.8. Proof of Proposition 3

Note that

∂

∂y

(
z∗

W

)
= −(µ− r)yβ1−1

bσ2

(
A(β2

1K1 + β2
2K2y

β2−β1) + K1K2(β1 − β2)2yβ2

(A + K1yβ1 + K2yβ2)2

)
.

Define the auxiliary function

[Y, X] → R

Ψ : y 7→ A(β2
1K1 + β2

2K2y
β2−β1) + K1K2(β1 − β2)2yβ2 .

Ψ is strictly increasing so it has at most one root. Since when u = 1, we have z∗

W ≥ 0, then it must be

the case that either Ψ has no root and is strictly positive or Ψ has one root so it is first negative and

then positive. We examine the sign of Ψ(Y ).

Case 1. When z∗1 = 0 is optimal, since z∗α = z∗1 = 0, it must be the case that Ψ indeed has a root. z∗

W

is hump-shaped in u.

Case 2. When F2(M,M) = 0 is optimal, we have Ψ(Y )

Ψ(Y ) = A(β2
1K1 + β2

2K2Y
β2−β1) + K1K2(β1 − β2)2Y β2

=
β1(β1 − β2)K1

β1 + b− 1

(
A(β1 + β2 + b− 1) + (1− b− β2)(1− b− β1)

Y −A

b− 1

)
=

β1(β1 − β2)K1

(1− b− β2)(b− 1)

(
1
θ
− Y

)
,

since − β1β2A
(β1+b−1)(1−b−β2) = 1

θ as β1β2A = − 1
1
2(

µ−r
bσ )2 and (β1 + b−1)(1− b−β2) = θ

1
2(

µ−r
bσ )2 . Hence Ψ(Y )

is positive exactly if and only if

Y <
1
θ

(Y >
1
θ
) whenever b > 1 (b < 1). (25)
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We can conclude that z∗

W is strictly increasing in u exactly when relationship (25) is satisfied otherwise

it is hump-shaped. A sufficient condition for Ψ to be always positive is θ < r (θ > r) whenever b > 1

(b < 1).

Case b = 1. We have Y = A and

Ψ(Y ) = K1(β1 − β2)(A(β1 + β2 − (β1 − β2)K1Y
β1)

=
AK1(β1 − β2)

$β1

(
(β1 + β2)$β1 − (β2 − α(β2 − 1)$)

)
,

where $ is defined by relationship (20). z∗

W is strictly increasing (hump shaped) in u exactly when

Ψ(Y ) ≥ 0(≤ 0).

A.9. Proof of Proposition 5

Let y = f ′(u)
1
b . As seen before in this Appendix

1
y

∂y

∂α
=

yβ1 ∂K1
∂α + yβ2 ∂K2

∂α

A− (β1 − 1)K1yβ1 − (β2 − 1)K2yβ2
.

Since

z∗ =
µ− r

bσ2

(
Ay−1 − (β1 − 1)K1y

β1−1 − (β2 − 1)K2y
β2−1

)
.

It follows that

∂z∗

∂α
= −µ− r

bσ2y

(
(β1 − 1)

∂K1

∂α
yβ1 + (β2 − 1)

∂K2

∂α
yβ2 + (A + (β1 − 1)2K1y

β1 + (β2 − 1)2K2y
β2

∂y

∂α

)
= −(µ− r)yβ1+β2

bσ2y

A(β1
∂K1
∂α y−β2 + β2

∂K2
∂α y−β1) + (β1 − β2)((β1 − 1)K1

∂K2
∂α − (β2 − 1)K2

∂K2
∂α

A− (β1 − 1)K1yβ1 − (β2 − 1)K2yβ2
.

The denominator of the above fraction is positive. In order to investigate the sign of its numerator,

let us define an auxiliary function

[Y, X] → R

Θ : y 7→ A(β1
∂K1
∂α y−β2 + β2

∂K2
∂α y−β1) + (β1 − β2)((β1 − 1)K1

∂K2
∂α − (β2 − 1)K2

∂K2
∂α ).

Θ is continuous and differentiable and

Θ′(y) = −β1β2A(
∂K1

∂α
y−β2−1 +

∂K2

∂α
y−β1−1).

Since ∂K1
∂α > 0 and ∂K2

∂α < 0, Θ′ is strictly increasing and either Θ(Y ) ≥ 0 or F achieves its minimum

at y∗ such that
∂K1

∂α
(y∗)β1 +

∂K2

∂α
(y∗)β2 = 0.
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If Θ achieves its minimum at y∗, then Θ(y∗) = (β1−β2)(y∗)−β2 ∂K1
∂α > 0, and in this case, Θ is positive

on [Y, X] . Otherwise, Θ′ is positive and Θ is strictly increasing. To prove that Θ is positive on [Y, X] ,

it is enough to show that Θ(Y ) ≥ 0 or equivalently that z∗1 is a decreasing function of α. There are

two cases.

Case 1: F2(M,M) = 0 is optimal. In this case

z∗1 =
µ− r

bσ2Y

(
A− (β1 − 1)K1Y

β1 − (β2 − 1)K2Y
β2

)
.

If b = 1, then Y = A and

∂z∗1
∂α

= −µ− r

bσ2A

(
(β1 − 1)

∂K1

∂α
Aβ1 + (β2 − 1)

∂K2

∂α
Aβ2

)
< 0.

If b 6= 1, we have

z∗1 =
µ− r

bσ2

(
1 +

β1β2(Y −A)
(b− 1)Y

)
.

Therefore
∂z∗1
∂α

=
µ− r

bσ2

(
−β1β2A

Y 2

∂Y
∂α

1− b

)
.

Since 1− b and ∂Y
∂α have opposite signs, we conclude that ∂z∗1

∂α < 0.

Case 2: z∗1 = 0 is optimal. In this case, z∗1 is independent of α, so ∂z∗1
∂α = 0 and Θ(Y ) = 0. The

proof is complete.

A.10 Representation of c∗

M , c∗ and W as Stochastic Processes

Process c∗

M . For u in (α, 1), recall that u = G( c∗

M ) so denoting H = G−1 we have

H ′(u) =
1

G′( c∗

M )
and H ′′(u) = −

G′′( c∗

M )
(G′( c∗

M ))3
.

Applying Ito lemma, we find

d

(
c∗t
Mt

)
= H ′(ut)dut +

σ2

2

(
zt

Mt

)2

H ′′(ut)dt

=
rG( c∗t

Mt
)− c∗t

Mt
+ (µ−r)2

bσ2 c∗t G
′( c∗t

Mt
)− 1

2

(µ−r
bσ

)2 ( c∗t
Mt

)2
G′′( c∗t

Mt
)

G′( c∗t
Mt

)
dt

+
µ− r

bσ

c∗t
Mt

dwt.
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Then

rG(
c∗t
Mt

)− c∗t
Mt

− 1
2

(
µ− r

bσ

)2( c∗t
Mt

)2

G′′(
c∗t
Mt

)

= (r − 1
A

)

(
(r − β1(β1 − 1)

2

(
µ− r

bσ

)2

)K1

(
c∗t
Mt

)1−β1

+ (r − β2(β2 − 1)
2

(
µ− r

bσ

)2

)K2

(
c∗t
Mt

)1−β2

+ A
c∗t
Mt

)

= (r − 1
A

)
c∗t
Mt

G′(
c∗t
Mt

).

So

d

(
c∗t
Mt

)
=

c∗t
Mt

(
(r − 1

A
+

(µ− r)2

bσ2
)dt +

µ− r

bσ
dwt

)
.

For u in [0, 1], we have 1
X ≤ c∗

M ≤ 1
Y . Define the geometric Brownian motion v such that v0 =

X(f ′(W0
M0

))−
1
b and

dvs = vs

(
(r − 1

A
+

(µ− r)2

bσ2
)ds +

µ− r

bσ
dws

)
.

Then, a representation of the process c∗

M is

c∗t
Mt

=
vte

Lt−Ut

X
,

where the processes L and U are increasing and continuous with L0 = U0 = 0 and

Lt = sup
0≤s≤t

[log vs − Us]
−

Ut = sup
0≤s≤t

[
log

X

Y
− log vs − Ls

]−
.

See Harrison (1985) p 22.

Consumption and Wealth Processes. The wealth process is given by Wt = MtG( c∗t
Mt

) and let

H = G−1 so that c∗t = MtH(Wt
Mt

).

Case 1: F2(M,M) = 0 is optimal. Using Ito lemma for semimartingales, we find that

log H

(
Wt

Mt

)
= log H

(
W0

M0

)
+ (

r − θ

b
+

(µ− r)2

2bσ2
)t +

µ− r

bσ
wt −

H ′(1)
H(1)

log
Mt

M0
,

Note that H′(1)
H(1) = Y

G′( 1
Y

)
> 0. As explained in Grossman and Zhou (1993), the quantity log H

(
Wt
Mt

)
is

bounded from above by log H(1) = − log Y and H′(1)
H(1) log

(
Mt
M0

)
> 0 serves as a regulator to keep the

arithmetic Brownian motion from exceeding − log Y . Define

lt = sup
0≤s≤t

[
log H

(
W0

M0

)
+ (

r − θ

b
+

(µ− r)2

2bσ2
)s +

µ− r

bσ
ws + log Y

]+

.
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It follows that Mt = M0e
Y

G′( 1
Y

)
lt

and a representation of the wealth process and consumption process

is

Wt = M0e
Y

G′( 1
Y

)
lt
G

(
H

(
W0

M0

)
e( r−θ

b
+

(µ−r)2

2bσ2 )t+µ−r
bσ

wt−lt

)
c∗t = H

(
W0

M0

)
e( r−θ

b
+

(µ−r)2

2bσ2 )t+µ−r
bσ

wt−lt .

Case 2: z∗1 = 0 is optimal. When wealth hits its maximum to date for the first time τ0, we have

dWt = (r − 1
Y

)Wtdt.

Upper Absorbing Barrier. If 1
Y < r, for all t ≥ τ0, Wt = Mt, c∗t = Mt

Y and zt = 0. A representation

of the wealth and consumption is

Wt =


M0G

(
H
(

W0
M0

)
e( r−θ

b
+

(µ−r)2

2bσ2 )t+µ−r
bσ

wt

)
, for t ≤ τ0

M0e
(r− 1

Y
)(t−τ0), for t ≥ τ0

c∗t =

 H(W0
M0

)e( r−θ
b

+
(µ−r)2

2bσ2 )t+µ−r
bσ

wt , for t ≤ τ0

M0e(r− 1
Y

)(t−τ0)

Y , for t ≥ τ0.

Upper Reflecting Barrier. If r ≤ 1
Y , wealth is driven down immediately after hitting its peak and

cannot exceed M0. Consumption and wealth processes are given by

c∗t =
M0

X
vte

Lt−Ut

Wt = M0G(
vte

Lt−Ut

X
).
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