Instituto Tecnológico Autónomo de México

Maestría en Finanzas
Economía Financiera (Eco-44105), 2015
An example of mixed-strategy Nash equilibrium
Ricard Torres

Each one of two individuals, 1 and 2, will confidentially write an integer number comprised between 1 and n, with $n \geq 2$, on a piece of paper. They will hand out those papers to a referee, who will read aloud the numbers written. If the two numbers coincide, then 2 will pay $\$ 1$ to 1 , otherwise no money will be exchanged.

In this game, the respective strategies of the players will be integer numbers x and y, with $1 \leq$ $x, y \leq n$. The utilities are:

$$
u_{1}(x, y)=\left\{\begin{array}{ll}
1, & \text { if } x=y ; \\
0, & \text { otherwise }
\end{array} \quad u_{2}(x, y)= \begin{cases}-1, & \text { if } x=y \\
0, & \text { otherwise }\end{cases}\right.
$$

Let $N=\{1,2, \ldots, n\}$, the set of possible strategies for both players. The best responses of both players are, for any $x, y \in N$:

$$
B_{1}(y)=\{y\}, \quad B_{2}(x)=N \backslash\{x\} .
$$

Consequently, there is no pure-strategy Nash equilibrium.
Let $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and $q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ be the respective mixed strategies chosen by the players. We are going to derive the best response of player 1 to a mixed strategy q of player 2 .

Assume first that there is j such that $q_{j}>q_{i}$, for any $i \neq j$. Consider first pure-strategy responses by player 1. If player 1 chooses a number x with probability 1 , then her utility is going to be $u_{1}=1 \times q_{x}+0 \times\left(1-q_{x}\right)=q_{x}$. Therefore, the best pure-strategy response by player 1 is $x=j$, with which she obtains utility $u_{1}=q_{j}$.

Consider now a mixed-strategy response p by player 1 . The utility she gets is:

$$
u_{1}(p, q)=p_{1} q_{1}+p_{2} q_{2}+\cdots+p_{n} q_{n} .
$$

The reason is: with probability $p_{1}, 1$ will choose $x=1$, in which case her utility will be q_{1}. With probability p_{2} her choice will be $x=2$ and her utility q_{2}. And so on.

Therefore the utility of 1 is going to be a convex combination of the numbers $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$. Since q_{j} is strictly larger than any of the other numbers, player 1 will attain the maximum utility when she chooses p with $p_{j}=1$.

Concluding, when there is q_{j} that is strictly larger than any other q_{i}, player 1's best response is the pure strategy $x=j$.

This should not be surprising: The expected utility of player 1 given any mixed strategy choice q by player 2 is a linear function of the probability vector $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$. Therefore, the maximum is always attained at an extreme point, in which $p_{i}=1$ for some i (and therefore 0 for all other components). In other words, for any mixed strategy q of player 2 , player 1 will always have some pure strategy which is a best response (although we do not discard the existence of mixed strategies that are also best responses).

Exercise 1. Given any mixed strategy q of player 2, show that any best response p of player 1 satisfies: $p_{j}>0$ implies that $q_{j}=\max \left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$. Conversely, show that any such p is a best response to q.

Consider now best responses of player 2 to a mixed strategy p by player 1 . Since the maximum utility player 2 can attain is 0 , any strategy that yields this utility is a best response. If there is j such that $p_{j}=0$, then the strategy q with $q_{j}=1$ will give player 2 a utility 0 and is a best response to p.

Exercise 2. Given any mixed strategy p by player 1, show that any best response q of player 2 satisfies: $q_{j}>0$ implies that $p_{j}=\min \left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Conversely, show that any such q is a best response to p.

Exercise 3. Show that the game has a unique mixed-strategy Nash equilibrium in which $p_{i}=q_{i}=1 / n$ for any $i \in\{1,2, \ldots, n\}$.

