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1 Unipersonal decision trees

A unipersonal decision tree is a set of nodes, some of which are connected by edges. There is a distinguished node,
the root, such that there is a unique path that connects any other node with it. Nodes can be either decision nodes,
in which the decision maker must choose an alternative, nature or chance nodes, that represent a random event, or
terminal nodes, that are labelled with the utility the decision maker attains if he or she reaches it.

At each decision node, the decisionmaker must choose one of a set of possible alternatives or actions; we associate
each such action with an edge coming out (ie, away from the root) of the decision node.

The decision nodes are partitioned into information sets: an information set is a set of decision nodes that the
decision maker is unable to distinguish. That is, when one of the nodes is reached, the decision maker knows he/she
is somewhere within the information set, but does not know at which of the nodes in it. The actions available at any
two decision nodes that belong to the same information set are the same. We will also make the convention that
actions available at different information sets are considered different (even though they might correspond to the
same physical act, say “invest 1 million dollars,” the fact that the information when taking the two actions is different
justifies our convention). By definition, all decision nodes belong to some information set, even if it contains only one
node.

A node B follows another node A if A is in the path that joins B with the root; we also say that A precedes B.
Similarly, an action a precedes a node B if there is an edge associated with action a in the path that joins B with the
root (note that more than one edge may be associated with the same action, if they follow decision nodes that are in
the same information set). The edges that immediately follow a nature node correspond to the different results of the
random event, and they are labelled with the corresponding probability.

Figure 1: In this unipersonal decision tree, there
are five decision nodes, labelled D1 (the root)
through D5, two nature nodes, N1 and N2, and
eight terminal nodes, labelled with the correspond-
ing utilities. There are three information sets: {D1},
{D2,D3}, and {D4,D5}. Note that the actions avail-
able at nodes in the same information set are the
same. Note also that the edges coming out of
nature nodes are labelled with their probabilities.
Node N1 precedes node D3, and action a also pre-
cedes node D3.
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2 Multipersonal decision trees

Amultipersonal decision tree is a decision tree in which there is more than one decision maker, so each decision node
belongs to one of the possible decision makers. As in the case of unipersonal decision trees, all the decision nodes
belonging to a particular decision maker are partitioned into information sets, which express the knowledge of that
individual at each instance in which he or she is called to choose. Each terminal node is labelled with a vector of
payoffs, one for each decision-maker.

We say that a (uni- or multipersonal) decision tree has perfect information if each information set is a singleton
(contains only one element), so that each individual knows precisely what the past history of choices is when he or
she is called to choose a move.

Let us look at some examples:

Figure 2: This is a simple multipersonal decision tree with two
decision-makers, 1 and 2, each of which has a single decision
node. For simplicity, we just label each decision node with the
number of the corresponding decision maker. There is perfect
information, because no information set contains more than one
decision node.
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Figure 3: This is a multipersonal decision tree with
two decision-makers, 1 and 2, both of which have
multiple decision nodes. The root of the tree is a
chance node. Since each of the information sets of
individual 2 has two decision nodes, information is
not perfect.
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Figure 4: This is a multipersonal decision tree with three
decision-makers, 1, 2, and 3. The tree has perfect information,
because each information set contains a single node.
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3 Strategies

A strategy is a rule that associates with each decision node one of the actions available there. We impose the restriction
that the action chosen at any two decision nodes that belong to the same information set must be the same, otherwise
we would have an inconsistency with our interpretation of what an information set means.

For instance, in the tree depicted in Figure 1, a possible strategy consists of choosing a at node D1, h at nodes D2
and D3, and i at nodes D4 and D5. In order to represent this more compactly we may order the information sets, and
then represent a strategy as an ordered vector of actions, one for each information set. Thus, the previous strategywould
be represented as (a,h, i). In multipersonal decision problems, we usually represent this as an ordered sequence of
choices with no commas, eg ahi, in order to distinguish it from the vector of strategies of all of the individuals.

In the two-person decision tree of Figure 3, a strategy for player 2 specifies a move at each of its information
sets, for instance eh. Analogously, in the three-person decision tree of Figure 4, a possible strategy for player 3 is, for
example, hi.

By construction, if there are no chance nodes, a choice of a strategy by each decision-maker gives rise to a unique
path from the root to precisely one of the terminal nodes. The corresponding vector of utilities indicates the payoffs
the individuals derive from that choice of strategies.

If there are chance nodes, a choice of a strategy by each decision-maker gives rise to a certain probability distribu-
tion over terminal nodes. For instance, in the unipersonal decision tree depicted in Figure 1, with the strategy (a,h, i)
the terminal node that has utility 0 is reached with probability 0.2, and the terminal node that has utility 1 is reached
with probability 0.8. The strategy (b, g, i) leads to the terminal node that has utility 2 with probability 0.7, and to the
terminal node that has utility 3 with probability 0.3.

Consider now the decision tree of Figure 3. The pair of strategies (ac, fh) by both individuals gives rise to the
probability distribution that places probability 1/2 on (2, 0), and probability 1/2 on (1, 0), so that the expected utilities
of the individuals from that choice of strategies are (1.5,0). In general, when there are chance nodes a choice of a
strategy for each individual allows us to compute their corresponding expected utilities.

When we select a strategy for each of the individuals in a multipersonal decision tree, the resulting vector of
strategies is also called a strategy profile.

4 Perfect information and backward induction

Consider a decision tree with perfect information in which the total number of nodes is finite. The procedure of
backward induction leads to a strategy profile in any such decision tree that has the following property: each player
acts optimally at each decision node, under the assumption that, at all decision nodes that follow it, the corresponding
players will also do so.

The procedure can be described as follows. Consider a decision tree with n decision nodes. Start from a decision
node that is not followed by other decision nodes (this is always possible because of finiteness and the nonexistence
of cycles in the tree), and select one of the alternatives in which the player obtains the highest payoff. Next, substitute
that decision node by the (possibly expected) payoff vector that results from the choicemade. This results in a decision
tree with n − 1 decision nodes. Iterate the procedure until we are left with a single decision node.

For example, consider the two-person decision tree of Figure 2. The decision node of player 2 is not followed by
any other decision node. If 2 chooses c she obtains 0, if she chooses d she obtains 50, therefore the latter is the optimal
choice. Given that, if player 1 chooses a the resulting payoffs will be (50, 50), and if player 1 chooses b the players will
obtain (1, 1), so the optimal solution for 1 is to choose a. Concluding, the solution by backward induction of this tree
is (a, c), and the corresponding payoffs (50, 50). Note that this is a Nash equilibrium, but there is also another Nash
equilibrium, which is not a backward induction solution, in which the players choose (b, c) and obtain (1, 1).

Consider now the decision tree of Figure 4. By backward induction, player 3 will choose i in the decision node at
the bottom. In the decision node at the top, player 3 is indifferent between g and h, and therefore either choice is valid
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according to the procedure. If 3 chooses gi, then the procedure of backward induction will imply that 2 chooses ce,
and therefore 1 chooses a, yielding the backward induction solution (a, ce, gi). On the other hand, if 3 chooses hi,
then 2 will choose de and 1 will choose b, yielding the backward induction solution (b,de,hi). This illustrates how
there may be multiple backward induction solutions if a player is indifferent at some step.

Figure 5: At the top node, player 2 chooses d, because c has an ex-
pected payoff .8 < 1. So we substitute that decision node with the
payoffs (1, 1) for both players. At the bottom node, 2 chooses f
and obtains an expected payoff 2, so we substitute this decision
node by the expected payoffs (1.5, 2). So the choice of 1 is be-
tween a, with which she obtains 1, and b, that yields 1.5. The
latter is the optimal choice, so the unique backward induction
solution is (b,df).
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Note that, if information is not perfect, one can construct easy examples in which the procedure of backward
induction does not lead to a solution.

Figure 6: This tree has imperfect information, be-
cause player 2 has an information set with two nodes.
If player 2 knew she was at the left node, she would
like to choose d, and if she knew she was at the right
one, she would like to choose c. But since 2 does not
know, she cannot choose, so the backward induction
procedure cannot be applied.
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5 Subgames and subgame perfect equilibria

The solution by backward induction is of limited applicability, because it is only well defined for decision trees that
are finite and have perfect information. We are going to show here that this concept can be generalized.

In a (uni- or multipersonal) decision tree, a subgame is a (nature or decision) node and all of the nodes and edges
that follow it, with the requirement that, if a decision node belongs to the subgame, then the entire information set
that contains that decision node must also be included. In particular, a decision node that belongs to an information
set in which there are other decision nodes cannot be the starting point of a subgame. By construction, if we detach
the subgame from the decision tree, it becomes a decision tree on its own, and our objective here is to analyze this
new decision tree as a separate entity. Since the original decision tree itself can be trivially viewed as a subgame, we
say that a subgame is proper if it is different from it.

Theunderlying idea is that, when the play enters a subgame, it stays in it and all players know it, so the subgame can
be analyzed as a unit. Whatever the players chose in the past does not matter: as soon as the play enters the subgame,
the past plans of the players are “sunk,” and only the choices within the subgame matter as regards the output.

A strategy profile for the players in the decision tree consists of the choice of a possible action for each information
set of each player. Therefore, a strategy profile in the decision tree induces a strategy profile in the subgame, when we
view the latter as a separate entity.
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TheNobel prize in Economics Reinhard Selten introduced the following concept: a strategy profile for the players
in a decision tree is said to be a subgame-perfect equilibrium if the strategies it induces in any subgame constitute a
Nash equilibrium of the subgame when viewing the latter as a separate entity.

This concept reduces to the backward induction solution in games with perfect information, and Selten proved
that all finite decision trees have at least one subgame-perfect equilibrium (possibly resorting to mixed strategies).

Figure 7: In this decision tree there are two (proper)
subgames: one begins at the decision node of 2 that
follows action a of 1, and the other at the decision
node of 2 that follows action b. At the former sub-
game, the only Nash equilibrium is (f, c), with pay-
offs (3, 2). At the latter subgame, the equilibrium is
the optimal choice g of 2, with payoffs (0, 2). There-
fore, in the overall tree the optimal strategy of 1 is a.
So this tree has a unique subgame-perfect equilib-
rium, (af, cg), with payoffs (3, 2).
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Figure 8: In this decision tree there are two (proper)
subgames: one begins at the nature node, and the
other at the decision node of 2 that follows action b
of 1. At the former subgame, the optimal choice
of 2 is d, with expected payoffs (2.2, 1.2). At the lat-
ter subgame, the optimal choice of 2 is e, with pay-
offs (0, 2). Therefore, in the overall tree the optimal
strategy of 1 is a. There is a unique subgame-perfect
equilibrium, (a,de), with expected payoffs (2.2, 1.2).
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Appendix: Perfect recall

Besides the requirements in the definition of decision trees, we almost always impose an additional restriction: all
players have perfect recall of their own past history of play.

We say that a decision tree satisfies perfect recall for player i if, whenever a decision node of i follows a particular
action of i, then all of the other decision nodes that are in the same information set follow the same action. Note that
in decision trees with perfect information all players have perfect recall.

Since this concept involves only the information sets and actions of a particular player i, it is easiest to illustrate it
with unipersonal decision trees: let us consider a couple of examples.

Figure 9: A unipersonal decision tree with imperfect
recall for the player. Node D2 follows action b of the
player, but nodeD1 is in the same information set and
does not follow b.
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Figure 10: This is another unipersonal decision tree
with imperfect recall for the player. For example,
node D2 follows action a of the player, but node D4
does not, even though it is in the same information
set.
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Figure 11: This is a modification of the previous
unipersonal decision tree that does satisfy perfect re-
call for the player. Now each node in the same in-
formation set is preceded by the same actions of the
player.

In the decision tree of Figure 9, the decision-maker cannot distinguish between the nodes D1 and D2, so, when
atD2 she cannot tell whether she has already taken action b or not. On the other hand, in the decision tree of Figure 10,
the decision-maker cannot distinguish between the nodes D2 and D4, so again she cannot tell whether she has taken
action b or not. Hence the denomination of “imperfect recall.”

In order to see that with imperfect recall something is not quite right, consider the example of Figure 9. Since
both nodes belong to the same information set, when choosing a the decision-maker reaches the terminal node with
utility 0, and when choosing b she reaches the one with utility 1: the terminal node with utility 10 is unreachable. In
finite trees in which all players have perfect recall (and all outcomes of chance nodes have strictly positive probability),
for any given terminal node there always exists a strategy profile under which this node is reachedwith strictly positive
probability.
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