## The Drivers' Problem



- $N \geq 2$ drivers want to go from $A$ to $D$ in the least amount of time.
- There are 3 alternative routes: ABD, ACD, and ABCD.
- The amount of time each driver spends on a given segment (AB, $B D, A C, C D, B C)$ depends on the number of drivers using it.


## Allocations

- An allocation is a triple of nonnegative integers that add up to $N$.
- Denote it with ( $N_{\text {ABD }}, N_{\text {ACD }}, N_{\text {ABCD }}$ ).
- An allocation is socially optimal if it minimizes the aggregate time spent by drivers on the road.
- An allocation is a Nash equilibrium if no driver can gain by unilaterally changing its proposed route.
- For this problem, finding optimal allocations and Nash equilibria can be easily automated with, eg, a spreadsheet.


## Time Costs

| Segment | Time cost |
| :---: | :---: |
| AB | $2 N_{\mathrm{AB}}$ |
| BD | $7+N_{\mathrm{BD}}$ |
| AC | $7+N_{\mathrm{AC}}$ |
| CD | $2 N_{\mathrm{CD}}$ |
| BC | $N_{\mathrm{BC}}$ |

- The time costs of the different segments, as function of the drivers taking them, are given in the above table.
- With these costs, the time per driver for each route is:

$$
\begin{aligned}
T_{\mathrm{ABD}} & =7+3 N_{\mathrm{ABD}}+2 N_{\mathrm{ABCD}} \\
T_{\mathrm{ACD}} & =7+3 N_{\mathrm{ACD}}+2 N_{\mathrm{ABCD}} \\
T_{\mathrm{ABCD}} & =2 N_{\mathrm{ABD}}+2 N_{\mathrm{ACD}}+5 N_{\mathrm{ABCD}}
\end{aligned}
$$

## Example with $N=4$

| $\left(N_{\mathrm{ABD}}, N_{\mathrm{ACD}}, N_{\mathrm{ABCD}}\right)$ | $\left(T_{\mathrm{ABD}}, T_{\mathrm{ACD}}, T_{\mathrm{ABCD}}\right)$ | Agg time |
| :---: | :---: | :---: |
| $(4,0,0)$ | $(19,-,-)$ | 76 |
| $(3,1,0)$ | $(16,10,-)$ | 58 |
| $(3,0,1)$ | $(18,-, 11)$ | 65 |
| $(2,2,0)$ | $(13,13,-)$ | 52 Opt |
| $(2,1,1)$ | $(15,12,11)$ | 53 |
| $(2,0,2)$ | $(17,-, 14)$ | 62 |
| $(1,3,0)$ | $(10,16,-)$ | 58 |
| $(1,2,1)$ | $(12,15,11)$ | 53 |
| $(1,1,2)$ | $(14,14,14)$ | 56 Nash |
| $(1,0,3)$ | $(16,-, 17)$ | 67 |
| $(0,4,0)$ | $(-, 19,-)$ | 76 |
| $(0,3,1)$ | $(-, 18,11)$ | 65 |
| $(0,2,2)$ | $(-, 17,14)$ | 62 |
| $(0,1,3)$ | $(-, 16,17)$ | 67 |
| $(0,0,4)$ | $(-,-, 20)$ | 80 |

