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1 Definition for distributions with finite support

Let us take the viewpoint of a tax agency that collects data about the income of individuals in its
jurisdiction. Suppose there are m distinct income levels, which we number in increasing order:

0 < y1 < y2 < · · · < ym−1 < ym.

(For the sake of simplification, we assume we are dealing with precise income levels, instead of ranges,
which would be more common in practice.) Define also the income vector as y = (y1, y2, . . . , ym). For
each level k (1 ≤ k ≤ m), let nk be the number of individuals who have income yk, so the population
vector is n = (n1, n2, . . . , nm). The aggregate income of this society is:

Y :=
m∑

k=1
nk yk = n1 y1 + n2 y2 + · · · + nm−1 ym−1 + nm ym.

The total number of individuals is:

N :=
m∑

k=1
nk = n1 + n2 + · · · + nm−1 + nm.

In order to be able to compare the income distributions of different jurisdictions, or of the same
jurisdiction in different periods, we are going to normalize the relevant variables and express them in
terms of proportions.

As regards the population, define the frequency of individuals in each category: fk = nk/N , for
1 ≤ k ≤ m. Note that frequencies have properties similar to probabilities: for all k, fk ≥ 0, and∑m

k=1 fk = 1. The frequency vector is f = (f1, f2, . . . , fm). Cumulative frequencies (the distribution
function) can be defined recursively:

Fo ≡ 0, Fk = Fk−1 + fk, for 1 ≤ k ≤ m.
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Thus, Fk = f1 + f2 + · · · + fk−1 + fk. We have that, for all k, 0 ≤ Fk ≤ 1, Fk ≤ Fk+1 whenever k < m,
and Fm = 1. The cumulative frequency vector is F = (F0, F1, . . . , Fm).

As regards income, consider the share of total income that corresponds to the aggregate income
of all individuals in each category: sk = (nk yk)/Y , for 1 ≤ k ≤ m. Note that shares have properties
similar to probabilities: for all k, sk ≥ 0, and ∑m

k=1 sk = 1. The shares vector is s = (s1, s2, . . . , sm).
We also define for this case cumulative shares:

So ≡ 0, Sk = Sk−1 + sk, for 1 ≤ k ≤ m.

Thus, Sk = s1 + s2 + · · · + sk−1 + sk. We have that, for all k, 0 ≤ Sk ≤ 1, Sk ≤ Sk+1 whenever k < m,
and Sm = 1. The cumulative shares vector is S = (S0, S1, . . . , Sm).

Let us represent in a Cartesian diagram the cumulative distribution of the population, F , on the
abscissa axis, and the cumulative distribution of shares, S, on the ordinate one. Our data consist of a
number of points: (F0, S0), (F1, S1), (F2, S2), . . ., (Fm, Sm). The Lorenz Curve is the result of joining
consecutive points by means of line segments, that is, of linearly interpolating the successive sample
points. By construction, the curve always begins at (F0, So) = (0, 0) and ends at (Fm, Sm) = (1, 1).

Consider a simple example of a given income distribution A. Let mA = 5, yA = (10, 20, 40, 50, 80),
and nA = (40, 40, 80, 20, 20). Let us represent the data in a table:

yA 0 10 20 40 50 80
nA 0 40 40 80 20 20
fA 0 4/20 4/20 8/20 2/20 2/20
sA 0 4/70 8/70 32/70 10/70 16/70
F A 0 4/20 8/20 16/20 18/20 20/20
SA 0 4/70 12/70 44/70 54/70 70/70

Thus, the Lorenz curve is the result of joining the points of the last two rows. The result for the
present distribution is shown in Figure 1.

By looking at the diagram we can understand the idea of constructing the curve by means of linear
interpolation. Suppose we wish to know what is the share of income that corresponds to the 30%
fraction of individuals with less income. The points of the cumulative curves show that 20% of the
population with less income (40 individuals) have income y1 = 10, which corresponds to a 4/70
fraction of aggregate income, and that the lower 40% has a 12/70 fraction of the aggregate. If we want
to consider the 30% fraction of the population with less income, to the 40 individuals with income
y1 = 10, that account for 20% of the total, we have to add half of the 40 individuals that belong to
the income category y2 = 20, which account for another 20%. Hence, this 30% of the population will
have total income 40 × 10 + 20 × 20 = 800, which amounts to 800/7000 = 8/70 of the total. Since
F = 0.3 = 0.5 ∗ 0.2 + 0.5 ∗ 0.4, the linear interpolation gives to the Lorenz curve at 0.3 the value
L(0.3) = 0.5 ∗ (4/70) + 0.5 ∗ (12/70) = 8/70.

In general, if we let F satisfy Fk−1 ≤ F ≤ Fk; then F is a convex combination of the two extremes,
ie, there is 0 ≤ λ ≤ 1 such that F = (1 − λ) Fk−1 + λ Fk. The linear interpolation assigns to F the
value L(F ) = (1 − λ) Sk−1 + λ Sk. By substituting λ we obtain:

L(F ) = Fk − F

Fk − Fk−1
Sk−1 + F − Fk−1

Fk − Fk−1
Sk =

FkSk−1 − Fk−1Sk

Fk − Fk−1
+ Sk − Sk−1

Fk − Fk−1
F = FkSk−1 − Fk−1Sk

fk
+ sk

fk
F.
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Figure 1: Lorenz curve of a discrete distribution.

So the Lorenz curve consists of m line segments indexed by k, for 1 ≤ k ≤ m, in which the kth segment
is given by the above expression. In particular, the slope of this line segment is sk/fk.

The Lorenz curve of a discrete distribution has the following properties:

1. If 0 < Fk < 1, then Sk < Fk. Geometrically, the curve lies below the diagonal, and coincides
with it if, and only if, m = 1.

2. The slopes of the successive linear segments are strictly increasing. As a result, the Lorenz curve
is a convex function.

3. Two Lorenz curves, LA and LB, are equal if, and only if, there exist constants p > 0 and q > 0
such that yB = p yA and nB = q nA (provided we let the ns have components that are not
integers).

Note also that, by construction, the Lorenz ordering is anonymous, in the sense that it treats the
individuals symmetrically, because it only depends on income categories and the number of people in
them, not on the identity of those individuals.

Property 3 is sometimes broken into two categories. First, let p = 1 and q > 0 vary: that is, there
is a proportional increase or decrease in the population (if q is integer, people refer to this property
as replication invariance). Second, let q = 1 and p > 0 vary: this is referred to as scale invariance.
Property 1: 0 < Fk < 1 implies Sk < Fk.

It will be convenient to create new notation. Suppose initially that m ≥ 2. For 1 ≤ k ≤ m − 1,
define the partial sums:

Nk =
k∑

i=1
ni, Yk =

k∑
i=1

ni yi.
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Define also the residual sums:

N−k =
m∑

i=k+1
ni, Y−k =

m∑
i=k+1

ni yi.

Thus, we have that, for each k, 1 ≤ k ≤ m − 1: N = Nk + N−k, and Y = Yk + Y−k. Substituting:

Sk =
k∑

i=1

ni yi

Y
= Yk

Y
= Yk

Yk + Y−k
, Fk =

k∑
i=1

ni

N
= Nk

N
= Nk

Nk + N−k
.

Hence:
Sk ≤ Fk ⇔ Yk

Yk + Y−k
≤ Nk

Nk + N−k
⇔ Yk N−k ≤ Nk Y−k ⇔ Yk

Nk
≤ Y−k

N−k
.

Now:

Yk

Nk
=

k∑
i=1

ni

Nk
yi, with

k∑
i=1

ni

Nk
= 1, and Y−k

N−k
=

m∑
i=k+1

ni

N−k
yi, with

m∑
i=k+1

ni

N−k
= 1.

This means that Yk/Nk is a convex combination of {y1, y2, . . . , yk}, which implies y1 ≤ Yk/Nk ≤
yk. Analogously, Y−k/N−k is a convex combination of {yk+1, yk+2, . . . , ym}, which implies yk+1 ≤
Y−k/N−k ≤ ym. In particular: Yk/Nk ≤ yk < yk+1 ≤ Y−k/N−k. Therefore, we will have Sk < Fk

whenever k ≤ m − 1. On the other hand, we always have S0 = 0 = F0 and Sm = 1 = Fm. The Lorenz
curve will coincide with the diagonal if, and only if, there is a unique income category (ie, there is
perfect income equality). If there is more than one income category, the Lorenz curve will lie strictly
below the diagonal at all interior points.

Property 2: The slopes of the successive line segments are strictly increasing.
As we have seen above, the slope of the linear segment between (Fk−1, Sk−1) and (Fk, Sk) is:

sk

fk
= nk yk/Y

nk/N
= N yk

Y
.

Therefore, the slopes of successive segments are proportional to the yk, which are strictly increasing.

Property 3: Let p > 0 and q > 0 be arbitrary numbers. Let yB = p yA and nB = q nA. Then it is
easy to see that, for each i, fA

i = fB
i and sA

i = sB
i , so the two Lorenz curves satisfy LA(F ) = LB(F )

for each F .
On the other hand, suppose that LA(F ) = LB(F ) for each F . In particular, Property 2 implies

that F A = F B (as vectors). This in turn implies, on the one hand, that fA = fB, and on the other
that SA = SB, so that sA = sB. Given these equalities, define

p =
∑m

i=1 fB
i yB

i∑m
i=1 fA

i yA
i

, q =
∑m

i=1 nB
i∑m

i=1 nA
i

.

Then we can check that yB = p yA and nB = q nA.

2 The Lorenz ordering

Property 1 above shows that, when you depart from a perfectly equitable distribution, the Lorenz
curve moves away from the diagonal. The Lorenz ordering among income distributions is defined
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as follows: we say that income distribution A is more unequal than income distribution B (or that B
Lorenz-dominates A) if, for all F ∈ [0, 1], LA(F ) ≤ LB(F ).

In order to understand how to check for Lorenz domination in the case of distributions with finite
support, we just need to take into account an elementary fact about linear interpolation: given four
points in R2, (x1, y1), (x1, z1), (x2, y2), and (x2, z2), satisfying x1 < x2, let f and g denote the respective
linear interpolations, f : [x1, x2] → [y1, y2] and g : [x1, x2] → [z1, z2], then we have that, for all x such
that x1 < x < x2, f(x) ≤ g(x) if, and only if, y1 ≤ z1 and y2 ≤ z2; moreover, the inequality is strict
if, and only if, max{z1 − y1, z2 − y2} > 0. The proof can be easily derived from our above explanation
of linear interpolation, so we skip it here.

Let now A and B be two income distributions, that is, there are mA ≥ 1 and mB ≥ 1, and collec-
tions of points in R2, {(F A

1 , SA
1 ), (F A

2 , SA
2 ), . . . , (F A

mA , SA
mA)} and {(F B

1 , SB
1 ), (F B

2 , SB
2 ), . . . , (F B

mB , SB
mB )}

such that the corresponding Lorenz curves LA and LB are the result of linearly interpolating between
consecutive points in each case. Let F be the union of the abscissa coordinates:

F = {(F A
1 , F A

2 , . . . , F A
mA , F B

1 , F B
2 , . . . , F B

mB }

Then, the fact about linear interpolation mentioned above implies that LA(F ) ≤ LB(F ) for all F ∈
[0, 1] if, and only if, LA(F ) ≤ LB(F ) for all F ∈ F. Additionally, there is F ∈ (0, 1) such that
LA(F ) < LB(F ) if, and only if, there is F ∈ F such that LA(F ) < LB(F ). In other words, in
order to check for Lorenz domination we can restrict ourselves to the points of F and their images
under the two Lorenz curves. This comparison, as well as the computation of Lorenz curves, is easily
implementable in programs like Matlab, or the freely available Octave, or Julia.

2.1 Mean preserving spreads

We have seen that the point of departure of the Lorenz curve construction is to work in terms of
proportions so as to be able to abstract from scale and compare different distributions. Unfortunately,
just working with proportions is not enough in order to get rid of all scale effects. It is very easy to
illustrate why with a few variations of our previous example.

Let us generate a new distribution from the old one that, at least intuitively, should unambiguously
lead to less inequality. With this aim, we will transfer half of the people in the lowest income category
to the second-lowest one. This will result in n = (20, 60, 80, 20, 20). The lowest category represents now
20/200 = 10% of the individuals. If the total wealth were unchanged, this would lead to exactly the
same share of total wealth that the lowest 10% of the population has under the previous distribution.
However, there is a scale effect: by transferring people to a superior income category, the total wealth
has increased, which implies that now the share of the lowest 10% of the population has decreased,
so that, at this point, the new Lorenz curve lies below the previous one (even though for most values
of F the new Lorenz curve is above the original one). The same phenomenon is repeated if we transfer
people from the highest to the second-highest category, or between intermediate categories: the scale
effects prevent the new Lorenz curve to dominate the previous one at all population shares F .

In order to avoid this type of problem and obtain a new distribution which dominates the original
one according to the Lorenz order, we may shift individuals from extreme categories towards less
extreme ones in such a way that the total wealth remains unchanged. In our example, this happens
if we move to the distribution nB = (30, 40, 90, 30, 10), because moving 10 individuals from y1 to y3
increases the wealth by 10 × 30 = 300, and moving another 10 individuals from y5 to y4 decreases
the wealth by the same amount. This results in unambiguous Lorenz domination of the original
curve by the new one. One can check that this distribution gives rise to the original one via a mean
preserving spread by comparing the areas under the respective distribution functions. We can also
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Figure 2: Lorenz domination between discrete distributions.

directly verify that A can be obtained from B via the following mean-preserving spread: out of the
nB

3 = 90 individuals in category y3 = 40, transfer 10 to y1 = 10, leave 65 in y3 = 40, transfer 10
to y4 = 50, and transfer 5 to y5 = 80; out of the nB

4 = 30 individuals in category y4 = 50, transfer 15
to y3 = 40, leave 10 in y4 = 50, and transfer 5 to y5 = 80. In general, a mean-preserving spread will
always result in Lorenz domination. Figure 2 shows the resulting ordered Lorenz curves.

Property 3 above shows that Lorenz domination can occur without equal means. Just take one
distribution that is a mean preserving spread of another one, and then rescale the income and/or
population vectors.

2.2 Pigou-Dalton transfers

One step-by-step way to implement mean preserving spreads is by using Pigou-Dalton transfers.
A Pigou-Dalton progressive transfer is one in which money is transferred from a higher-income

individual to a lower-income one without altering the overall ranking. Analogously, a Pigou-Dalton
regressive transfer is one in which money is transferred from a lower-income individual to a higher-
income one without altering the overall ranking. The idea is that a sequence of progressive transfers
should result in a less unequal distribution, and a sequence of regressive transfers in a more unequal
one.

Formally, given a distribution (yA, nA), and given two income levels yA
i and yA

j , with i < j, let t

satisfy 0 < t ≤ min{yA
i+1 − yA

i , yA
j − yA

j−1} (except if j = i + 1, in which case 2t ≤ yi+1 − yi). Suppose
the distribution (yB, nB) is obtained from (yA, nA) by singling out an individual r (which stands for
“receiver”) in category yA

i and another individual d (which stands for “donor”) in category yA
j , and

transferring an amount t from d to r, and letting everything else as in the original distribution. Then
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we say that the move from (yA, nA) to (yB, nB) is a simple Pigou-Dalton progressive transfer.
Consider again a given distribution (yA, nA), and suppose i < j, but assume now that 0 < t ≤

min {yA
i −yA

i−1, yA
j+1−yA

j } (with the convention yA
0 ≡ 0 and yA

mA+1 ≡ ∞). Suppose that the distribution
(yB, nB) is obtained from (yA, nA) by singling out an individual d (which stands for “donor”) in
category yA

i and another individual r (which stands for “receiver”) in category yA
j , and transferring

an amount t from d to r, and letting everything else as in the original distribution. Then we say that
the move from (yA, nA) to (yB, nB) is a simple Pigou-Dalton regressive transfer.

It is clear that (yB, nB) can be obtained from (yA, nA) by a sequence of progressive transfers if,
and only if, the latter can be obtained from the former by a sequence of regressive transfers. The
interesting result1 is that, (yB, nB) dominates in the Lorenz-curve sense (yA, nA) if, and only if, it can
be obtained from it by a sequence of progressive transfers (after normalizing the two series).

By construction, a Pigou-Dalton transfer (and, as a consequence, a sequence of those) does not
alter the aggregate income. In a regressive transfer, in which income is transferred from a lower
income person to a higher income one, the former moves downward and the latter upward in the
income distribution, so the result is more spread: it is therefore a mean preserving spread. When the
transfer is progressive, the movement goes in the opposite direction, so the original distribution is a
mean preserving spread of the resulting one.

3 The Lorenz curve in terms of the generalized inverse for general
random variables

In general, let I be the set of all individuals that receive income. This set can be ordered in an arbitrary
way (eg, alphabetically) or not at all. If N is the total number of individuals, each individual has
weight (ie, probability) 1/N . Then we can view the income distribution as a random variable defined
on this sample space, X : I → R, so that X(i) denotes the income of individual i ∈ I. Its distribution
function is:

F (y) = P{i ∈ I : X(i) ≤ y} = 1
N

# {i ∈ I : X(i) ≤ y}.

Here, think of I as the set of names of all individuals, ordered alphabetically. In order to define the
Lorenz curve, we would like to order the individuals by income levels, and this is accomplished by
considering the generalized inverse Y (t) of F (y). In this case, Y (t) indicates the income level of any
individual for whom a fraction t of individuals have a smaller income than him or her. In this sense,
by resorting to the generalized inverse we have ranked the individuals by income level.

What follows is equally valid for discrete or continuous distributions (or a mixture of them). Let
µ = EX = EY =

∫ 1
0 Y (s) ds be the average income. The Lorenz curve is the function L : (0, 1) → [0, 1]

defined as the share of income received by the fraction t of individuals with lower income:

L(t) = 1
µ

∫ t

0
Y (s) ds =

∫ t
0 Y (s) ds∫ 1
0 Y (s) ds

.

Additionally, we can (continously) extend it to the extremes of the interval by setting L(0) = 0 and
L(1) = 1. This expression is valid no matter whether the distribution is discrete, continuous, or a
combination of the two.

When XA and XB are random variables that represent income distributions, one can show that,
whenever µA = µB, the fact that A Lorenz-dominates B is equivalent to second order stochastic
dominance of XB by XA. This result was first shown by Atkinson2 for continuous distributions.

1Theorem 2.1 in Fields and Fei, “On Inequality Comparisons,” Econometrica, vol. 46, n. 2, 1978.
2“On the Measurement of Inequality,” Journal of Economic Theory, 2, pp. 244-263, 1970.
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